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We investigate the single-flavor color superconductivity in a magnetic field. Because of the absence of

the electromagnetic Meissner effect, forming a nonspherical CSC phase, polar, A, or planar, does not cost

energy of excluding magnetic flux. We found that these nonspherical phases may be reached via a

sequence of first order phase transitions under the typical quark density and magnetic field inside a

neutron star.
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A cold quark matter will become a color superconductor
at sufficiently high baryon density [1]. In the core region of
a compact star, the baryon density is expected to be several
times higher than that of a normal nuclear matter. The
quarks may be released from hadrons and form a quark
matter of �� 400–500 MeV, providing an opportunity to
the color superconductivity (CSC).

While the pairing force is maximized in the s-wave
channel, the antisymmetry of the wave function requires
the Cooper pairing between different quark flavors. But the
mass of strange quarks and the charge neutrality induce a
substantial Fermi momentum mismatch among different
flavors and thereby reduce the phase space available for
pairing. A number of exotic 2 flavor or 3 flavor CSC phases
have been proposed without reaching a consensus solution.
The single-flavor CSC (pairing within each flavor) be-
comes a potential candidate even with the disadvantage
of a reduced pairing strength. The dominant spin (the total
angular momentum) of the single-flavor Cooper pair is
one. Like the superfluidity of 3He, there are a number of
different pairing states and we shall focus in this Letter on
four of them: the spherical color-spin locked (CSL) [2,3]
state and nonspherical polar, A and planar ones. Without a
magnetic field, the CSL pairing is energetically most fa-
vored, even when the angular momentum mixing effect is
taken into account [4].

The energy balance among different single-flavor CSC
phases will be offset in a magnetic field, which is present in
a compact star and could exceed 1015 G in magnitude.
Only the CSL phase shield the magnetic field [3]. The
electromagnetic Meissner effect is absent for nonspherical
states (polar, A, or planar). Cooling a normal quark matter
to the CSL will require an extra amount of work to expel
out the magnetic flux. Being free from such a penalty,
nonspherical phases may show up under a sufficiently
high magnetic field. Obtaining the phase diagram of a
single-flavor CSC with respect to magnetic field and tem-
perature is the main scope of the present Letter.

The structure of the Meissner effect in a single-flavor
pairing is determined by the pattern of its symmetry break-

ing [3]. The condensate of a diquark operator takes the
form

� ¼ h �c C�
c�cc i; (1)

where c is the quark field, c C ¼ �2c
� is its charge

conjugate, �c with c ¼ 2, 5, 7 is an antisymmetric Gell-
Mann matrix, and �c is a 4� 4 spinor matrix. We may
choose �5 ¼ �7 ¼ 0 for the polar and A phases, �2 ¼ 0 for
the planar phase, but none of �c ’s vanishes for CSL phase.
The condensate of CSL breaks the gauge symmetry
SUð3Þc � Uð1Þem completely. A nonspherical condensate,
however, breaks the gauge symmetry partially and the
Meissner effect is incomplete. Within the residual gauge

group, there exists a U(1) transformation, c !
e�ði=2Þ�8��iq�c with q the electric charge of c , � ¼
�2

ffiffiffi
3

p
q� for the polar and A phases and � ¼ 4

ffiffiffi
3

p
q� for

the planar phase. The corresponding gauge field A� is

identified with the electromagnetic field in the condensate.
It is related to the electromagnetic field A and the 8th
component of the color field A8 in the normal phase
through a rotation

A� ¼ A� cos��A8
� sin�; V� ¼ A� sin�þA8

� cos�;

(2)

where tan� ¼ �2
ffiffiffi
3

p
qðe=gÞ for polar and A, and tan� ¼

4
ffiffiffi
3

p
qðe=gÞ for planar with g the QCD running coupling

constant. The Meissner effect requires ~r� ~V ¼ ~0 and
thereby imposes a constraint inside a nonspherical CSC [5]

B 8 ¼ �B tan� (3)

between the color and the ordinary magnetic fields.
Expressing the gauge coupling �c��ðeqA� þ A8

��8=2Þc
in terms ofA� and its orthogonal partnerV�, we extract

the electric charges with respect to A in color space,

Q ¼
8><
>:

3qgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ12q2e2

p diagð0; 0; 1Þ for polar and A

3qgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þ48q2e2

p diagð1; 1;�1Þ for planar:
(4)

PRL 105, 042001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
23 JULY 2010

0031-9007=10=105(4)=042001(4) 042001-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.042001


The thermal equilibrium in a magnetic field Hẑ is de-
termined by minimizing the Gibbs free energy density,

G ¼ �� BH; (5)

where � is the thermodynamical potential in the grand
canonical ensemble. Ignoring the induced magnetization
due to the normal current, we have

� ¼ 1

2
B2 þ 1

2

X8
l¼1

ðBlÞ2 � p; (6)

where p is the pressure at B ¼ 0, maximized with respect
to the gap parameter in the case of a CSC phase. The
minimization with respect to B and Bl in a nonspherical
phase is subject to the constraint (3). For a hypothetical
quark matter of one flavor only, we find that

G ¼
8><
>:
�pn � 1

2H
2; for normal phase

�pCSL; for CSL
�pi � 1

2H
2cos2�i; for i ¼ polar; A; planar

(7)

after the minimization. As will be shown below,

pn < pA < ppolar <pplanar < pCSL: (8)

The phase corresponding to minimum among G’s above
wins the competition and transition from one phase to
another is first order below Tc.

The situation becomes more subtle when quarks of
different flavors coexist even though pairing is within
each flavor. Different electric charges of different quark
flavors imply different mixing angles which may not be
compactible with each other. Consider a quark matter of u
and d flavors with each flavor in a nonspherical CSC state
with different mixing angles. Equation (3) imposes two
constraints, which are consistent with each other only if
B ¼ B8 ¼ 0. Then we end up with an effective Meissner
shielding [3], making it fail to compete with the phase with
both flavors in CSL states. On the other hand, one may
relax the constraints by assuming that the basis underlying
the condensate of u quarks differ from that underlying the
condensate of d quarks by a color rotation. Consequently
the constraint (3) for each flavor reads B8 ¼ �B tan�u and
B08 ¼ �B tan�d. If both flavors stay in the polar or planar
phases, which allows B1�3 to penetrate in, one may expect
that an orthogonal transformation

B08 ¼ B8 cos�� B3 sin� B03 ¼ B8 sin�þ B3 cos�

(9)

could compromise both constraints. Such a transformation,
however, lies outside the color SU(3) group and therefore,
the mutual rotation of color basis is not an option. The
phases of the two-flavor quark matter (u, d) without
Meissner effects, which can compete with (CSL, CSL),
include (polar, planar), [polar (normal), normal (polar)], [A
(normal), normal (A)] and (normal, normal). Notice the
coincidence of the mixing angle of the polar state of u
quarks and that of the planar state of d quarks. Also the
normal phase does not impose any constraint on the gauge
field and can coexist with any nonspherical CSC.
The Gibbs free energies of (normal, normal) and (CSL,

CSL) phases remain given by the first and the second
equations of (7), but with pn and pCSL referring to the total
pressure of u and d quarks. For nonspherical phases, we
haveG ¼ �p� 1

2H
2 cos�, where p is the total pressure of

both flavors with at least one of them in a nonspherical
CSC state and � is their common mixing angle. For
normal-CSC combination, � refers to that of the CSC state.
The charge neutrality condition is imposed in all phases,
which makes the Fermi sea of d quarks larger than that of u
quarks. The color neutrality condition is ignored owing to
the small energy gap associated to the single-flavor pairing.
The number of combinations to be examined is reduced by
two criteria: (1) For two combinations of the same mixing
angle, the one with higher pressure wins. (2) For two
combinations of the same pressure, the one with smaller
magnitude of the mixing angle wins. It follows that there
are only four phases to be considered in each case of two
and three flavors with zero quark masses, which are shown
in Table I. The phase diagram of each case will be deter-
mined below and their relevance to the realistic s quark
mass will be discussed afterwards.
The pressure of the single-flavor CSC in the absence of a

magnetic field has been obtained in the literature at zero
temperature within the frame work of the one-gluon ex-
change. We shall extend the analysis up to the transition
temperature Tc, which is universal for all single-flavor
pairings. To avoid the technical complexity of the one-
gluon exchange, we shall work with a NJL-like effective
action which picks up only the dominant pairing channel of
the former, the transverse pairing, in the ultrarelativistic
limit. The Hamiltonian of the effective action reads [6]

TABLE I. This table shows possible phases under a magnetic field for both two-flavor and three-flavor cases with each flavor
forming spin-one CSC or remaining normal state. The critical temperature (the same for CSL, planar, polar, and A) has also been
included.

I II III IV TCð10�1 MeVÞ
Two-flavor CSLu, CSLd ðpolarÞu, ðplanarÞd ðnormalÞu, ðpolarÞd ðnormalÞu, ðnormalÞd 1.35

Three-flavor CSLu, CSLd;s ðpolarÞu, ðplanarÞd;s ðnormalÞu, ðpolarÞd;s ðnormalÞu, ðnormalÞd;s 0.49
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H ¼
Z

d3r½ �c ð ~� � ~r���4Þc
�G �c��T

lc �c��T
lc �; (10)

with Tl ¼ 1
2�

l andG an effective coupling. Introducing the

condensate (1), we find the pressure of each flavor under
mean field approximation

p ¼ 2T

�

X
k

lnð1þ e�ðjk��j=TÞÞ � 1

�

X
k

ðk��� jk��jÞ

� 2

�

X
k

ðk��� EkÞ � 9

4G
�2

þ 4T

�

X
k

lnð1þ e�ðEk=TÞÞ; (11)

where Ek ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk��Þ2 þ �2f2ð�Þp
with � the angle be-

tween k and a prefixed spatial direction and� given by the

solution of the gap equation ð@p@�Þ� ¼ 0. The function fð�Þ
is given by

fð�Þ ¼

8>>>>><
>>>>>:

1; for CSL phaseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4 ð1þ cos2�Þ

q
; for planar phaseffiffi

3
2

q
sin�; for polar phaseffiffiffi
3

p
cos2 �

2 : for A phase

(12)

Introducing �ps � ps � pn � �sðTÞ �
2�2

0

2�2 with s labeling

different pairing states and �0 the CSL gap at T ¼ 0. We
have �CSLð0Þ ¼ 1, �planarð0Þ ¼ 0:98, �polarð0Þ ¼ 0:88 and

�Að0Þ ¼ 0:65, and �sðTcÞ ¼ 0with Tc ¼ e�E
� �0. The func-

tion �sðTÞ for 0< T < Tc of various states is displayed in
Fig. 1, which satisfies the inequalities (8). In a multiflavor
quark matter, the Fermi momentum of each flavor is dis-
played from each other to meet the charge neutrality
requirement. For an ideal gas of (u, d) quarks and electrons
at zero temperature, we find that �u ¼ 0:87� and �d ¼
1:09�. While for an ideal gas of (u, d, s) quarks and

electrons with ms � �, we obtain that �u ¼ �, �d ¼
�þ m2

s

4� and �s ¼ �þ m2
s

4� . The corrections brought about

by nonzero temperature and/or gap parameters contribute a
higher order term than Oð�2�2Þ to the pressure and can be
neglected here.
By balancing the Gibbs free energy of different phases,

we obtain the phase diagram with respect to temperature
and magnetic field. The two-flavor and three-flavor cases

are shown in Fig. 2, where H0 is defined by H0 ¼ ��0

� . If

we calibrate the effective coupling G by identifying �0

with that of the one-gluon exchange [2,7]

�0 ¼ 512�4

�
2

Nf

�
5=2 �

g5
exp

�
� 3�2ffiffiffi

2
p

g
� �2 þ 4

8
� 9

2

�

(13)

extrapolated to� ¼ 500 MeV and	s ¼ 1, we end up with
the values of Tc and H0 in Table I and Fig. 2. For the three-
flavor case, we ignored the Fermi momentum mismatch to
be consistent with the ultrarelativistic approximation.
Our ultrarelativistic treatment of s quarks in the three-

flavor case approximates well if ms is considerably lower
than� but this may not be the case as was indicated by the
numerical work of [8]. For ms comparable to �, the mass
effect has to be included in the pairing dynamics and the
CSC transition temperature for s quarks, T0

c will be low-
ered. The new phase diagram will consist of the two-flavor
CSC for T0

c < T < Tc and the three-flavor CSC for 0<
T < T0

c. The two-flavor part is obtained by scaling the
upper panel of Fig. 2 slightly downward because of the
additional screening of the one-gluon exchange by normal
s quarks. As long as ms is sufficiently far from the non-
relativistic limit, the inequality (8) holds for the s quark
CSC and the three-flavor region will be occupied by the
same phases I–IV in the second row of Table I with the
same relative positions. The phase boundaries join contin-

FIG. 1. The function �sðTÞ for various pairing states.

three flavor

two flavor

FIG. 2. H-T phase diagram with H0 ¼ 5:44� 1014 G, 1:97�
1014 G for two-flavor and three-flavor cases, respectively.
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uously at T0
c with a slight upward jump of the slopes as one

crosses from the two-flavor region to the three-flavor re-
gion because of the onset of the s quark CSC. The details
will be reported elsewhere. The analysis up to now ignores

the magnetization M ¼ @p
@B [9] in the absence of the

Meissner effect and we attempt to justify this approxima-
tion here. The potential hazard comes from the de Hass–
van Alphen (dHvA) effect stemming from the discreteness
of the Landau orbit if the mean free path l of quarks is
longer than the cyclotron radius, �=ðeBÞ. Even though the
magnetic field in the phase diagrams is weak in the sense
ðeBÞ2 � �, a large magnetization may emerge through the
derivative because of the rapid oscillation. The stability

condition @2G
@B2 > 0, however, prevents its happening. Along

the equilibrium M-B curve constructed by the Maxwell

rule, the ratio M=B cannot exceed the order of 	2=3
e in the

normal phase. This is also expected to be the case in a
nonspherical CSC phase. Because of the nonzero charges
of the pairing partners Eq. (4), the Landau orbits also
impact on the energy gap in the planar phase and a similar
issue for color-flavor locking (CFL) has been addressed in
the literature [10–12]. Our analytic work reveals that the
magnitude of the oscillatory term of the gap is suppressed

byOð ffiffiffiffiffiffi
eB

p
=�Þ relative to the term at B ¼ 0. In the opposite

limit where l � �=ðeBÞ, the dHvA oscillation is smeared
out by scattering.

To conclude, we have explored the consequences of the
absence of the electromagnetic Meissner effect in a non-
spherical CSC phase of single-flavor pairing. We found
that these nonspherical phases occupy a significant portion
of the H-T phase diagram for the plausible magnitude of
the magnetic field inside a compact star. The latent heats
released as the star cools through the phase boundaries of
Fig. 2 is expected to cause observable energy bursts [13].
Since the transverse pairing, which pairs quarks of oppo-
site helicities, breaks the chiral symmetry, the Goldstone
modes associated to the nonspherical phases will impact on
the transport properties, the neutrino emissivity, and the
r-mode instability. Although the Urca process will not be
suppressed because of unpaired quarks in the ultrarelativ-
istic limit, including quark masses may change the story.

The nonspherical phases discussed in this Letter are all
homogeneous in space. A domain wall structure was sug-
gested in [14] in the context of 2SC and CFL in a magnetic
field. The mechanism involves the absence of the Meissner
effect, the chiral symmetry breaking, and the axial anom-
aly. It would be interesting to extend the analysis of [14] to

the nonspherical phases. We have not considered the non-
inert phases discussed in [15]. Nor have we considered the
p-wave pairing with mismatch [16], which is unlikely in
QCD. In any case, the importance of the nonspherical CSC
in a magnetic field, revealed in this Letter, will remain.
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F. Wilczek, Phys. Rev. D 60, 114033 (1999); R. D. Pisarski
and D.H. Rischke, Phys. Rev. D 61, 074017 (2000); W. E.
Brown, J. T. Liu and H-C Ren, Phys. Rev. D 62, 054016
(2000).
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