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We find the first example of a quantum Berenzinskii-Kosterlitz-Thouless (BKT) phase transition in two

spatial dimensions via holography. This transition occurs in the D3=D5 system at nonzero density and

magnetic field. At any nonzero temperature, the BKT scaling is destroyed and the transition becomes

second order with mean-field exponents. We go on to conjecture about the generality of quantum BKT

transitions in two spatial dimensions.
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Introduction.—Holography [1–3] has become an impor-
tant tool in the investigation of strongly coupled systems.
Despite being restricted to a special class of theories—
those with simple gravitational duals—the technique has
found interesting applications to the physics of the quark-
gluon plasma [4]. Recently, there have been attempts to use
holographic models to approach condensed matter sys-
tems—like the Fermi gas at unitarity [5,6], superfluids
[7], and non-Fermi liquids [8–11]—with various degrees
of success.

Phase transitions are a central physical concept that can
be studied holographically. They are present in many holo-
graphic models and frequently allow simple geometric
interpretations. However, most holographic phase transi-
tions are either first-order [12] or second-order with mean-
field exponents. The mean-field behavior arises from the
large N parameter which suppresses quantum fluctuations
in the gravity theory and allows the latter to be treated
semiclassically. On the other hand, most interesting ques-
tions are usually beyond the mean-field approximation
[13], or beyond the Landau-Ginzburg-Wilson paradigm
altogether [14]. It is important to investigate if the holo-
graphic method can be used to study these non-mean-field
phase transitions [15,16].

In this Letter, we show that, even within the confines of
large-N field theories, another type of phase transition is
possible—namely, those with the scaling behavior of the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition
[17,18]. Recall that in the BKT phase transition, the order
parameter scales as expð�c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc � T

p Þ near the critical
temperature Tc [19]. In our case, interestingly, the phase
transition is a quantum phase transition, occurring at zero
temperature in 2þ 1 spacetime dimensions. The explicit
example we consider is a 2þ 1 dimensional theory at a
finite density d of a conserved charge and a magnetic field
B. At a particular value of the ‘‘filling fraction’’ � ¼ d=B,
the system suffers a transition to a broken symmetry state,
and the scaling of the order parameter is the same as in a
BKT phase transition, �� expð�c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c � �

p Þ. We shall

call this phase transition the ‘‘holographic BKT phase

transition,’’ although it happens in a context different
from the original BKT phase transition. The BKT scaling
occurs in quantum mechanics with a 1=r2 potential, and
has been speculated to describe the chiral phase transition
in QCD with large number of flavors [20].
On the gravitational side, the transition occurs due to the

violation of the Breitenlohner-Freedman (BF) bound [21]
in the infrared region by the scalar field dual to the order
parameter. As shown in [20], this violation was expected to
produce BKT scaling. This work represents the first time
that the BF bound has been violated in a controlled setting.
Although this mechanism seems similar to that of a
second-order Landau phase transition, the field in the
bulk actually represents an infinite tower of states in the
boundary quantum field theory. At the phase transition, an
infinite number of field theory modes become unstable at
the same time—an extremely unnatural situation within the
Landau theory.
The gravitational description of the holographic BKT

transition is given in terms of a probe brane minimizing its
worldvolume action in a fixed geometry. In Ref. [22], three
of us studied one such probe describing a 3þ 1 dimen-
sional field theory. In 3þ 1 dimensions the competition
between finite density and the magnetic field gave rise to a
second-order transition with mean-field scaling. (See
Refs. [22,23] for technical details and a discussion of the
related literature.) In this work, we will show that the same
setup in 2þ 1 dimensions gives rise to BKT scaling. The
fact that the density and the magnetic field have the same
mass dimension in 2þ 1 dimensions will be crucial.
The D3=D5 system.—We write the AdS5 � S5 back-

ground metric as

g ¼ ðr2 þ y2Þð�dt2 þ d~x2Þ þ 1

r2 þ y2
ðdr2 þ r2d�2

2

þ dy2 þ y2d�2
2Þ; (1)

where ~x is a spatial three-vector and d�2
2 is the metric of a

unit-radius two-sphere. In these coordinates the boundary
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of the AdS5 is located at r2 þ y2 ! 1 and the horizon at
y ¼ r ¼ 0.

We consider Nf probe D5 branes in this geometry,

making an ansatz that the probes wrap the first two-sphere,
the ‘‘radial coordinate’’ r, time, and two spatial directions.
The branes have a profile parameterized by y ¼ yðrÞ. The
dual field theory is N ¼ 4 SUðNÞ super-Yang-Mills the-
ory at large ’t Hooft coupling � coupled to Nf fundamental

hypermultiplets along a 2þ 1-dimensional defect. This
theory has a Uð1Þ � SUð2Þ1 � SUð2Þ2 global symmetry,
where the two SUð2Þ factors are chiral R symmetries. The
field y is dual to a condensate of the field theory which can
spontaneously break the second SUð2Þ factor. We are
interested in the chiral phase transition between y ¼ 0
and y � 0 configurations.

We turn on a density of the Uð1Þ flavor charge and a
magnetic field coupled to this charge. On the gravity side,
we turn on a field strength for the Uð1Þ gauge field dual to
the current, F ¼ A0

tðrÞdt ^ drþ Bdx1 ^ dx2. The radial
electric field A0

t is supported by charge behind the AdS
horizon, so these branes extend to this horizon.

The Dirac-Born-Infeld (DBI) action density for these
probe branes takes the form

S ¼ �N
Z

drr2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02 � A02

t

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ B2

ðr2 þ y2Þ2
s

: (2)

where N ¼ ffiffiffiffi
�

p
NfNc=ð2�3Þ. Since At only appears

through derivatives, d � �S=�A0
t—the charge density—is

r independent. The action at fixed density is obtained by
Legendre transforming Eq. (2) with respect to A0

t,

~S ¼ �
Z

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þN 2r4 þ N 2r4B2

ðr2 þ y2Þ2
s

: (3)

The onset of the phase transition can be found by
analyzing the stability of small perturbations around y ¼
0, which are described by the quadratic part of (3),

L��N
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ B2 þ r4

q
y02 þ N B2y2

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ B2 þ r4

p ; (4)

where � ¼ d=N . We pause to note two features of this
Lagrangian. Near the boundary at large r, y=r fluctuates as
a scalar with mass squared m2 ¼ �2 in AdS4. However, at
small r (the IR of the dual theory), y=r behaves like a scalar

in AdS2 with m2 ¼ �2B2=ðB2 þ �2Þ. If �=B <
ffiffiffi
7

p
, then

the mass of y=r in the IR region is below the Breitenlohner-
Freedman bound of stability for the effective AdS2,m

2
BF ¼

�1=4. In this case the trivial embedding y ¼ 0 is unstable
and the ground state should instead have y � 0. Thus, the
chiral phase transition occurs at the filling fraction

�c ¼ d

Bc

¼ N
�

Bc

¼
ffiffiffiffiffiffi
7�

p
NfNc

2�3
: (5)

In the broken phase, the condensate can be found by
solving the equation for the embedding with appropriate

boundary conditions. We are interested in the critical be-
havior near the phase transition. In this regime, we find the
embedding by matching the solutions in two regions: a
small-r nonlinear core and a large-r linear tail.
In the core region, we can set B2 ¼ �2=7, and neglect r4

compared to �2. The action then becomes

S��N �
Z

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r4

7ðr2 þ y2Þ2
s

: (6)

Our brane embeddings, which extremize this action and
obey the boundary condition yð0Þ ¼ 0, form a one-
parameter family of solutions related by scaling: y�ðrÞ ¼
�fðr=�Þ, where y ¼ fðrÞ is one particular embedding. At
large r, any solution f has the asymptotic form

fðrÞ ¼ ffiffiffi
r

p ð�a0 þ a1 logrÞ; r � 1: (7)

Numerically solving the equation of motion by shooting,
we find a solution f with a0 ¼ �:211 and a1 ¼ :0585. A
general embedding in the core then has the asymptotics

y�ðrÞ ¼ a1
ffiffiffiffiffiffi
�r

p
log

�
r

r0

�
; r � r0 ¼ �ea0=a1 : (8)

It would be incorrect to use this expression too far away
from the core: the terms neglected in the core action Eq. (6)
become important. But in the linear regime y=r, y0 � 1,
the two independent solutions for y can be found without
additional approximation,

f�ðuÞ ¼ uð1�i�Þ=2
2 2F1

�
1� i�

8
;
3� i�

8
; 1� i�

4
;�u4

�
;

(9)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
c � �2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ B2

p ; u ¼ r

ð�2 þ B2Þ1=4 : (10)

When the filling fraction is just below the phase transition,
� is real and small. From the two solutions in Eq. (9), we
construct linear combinations that asymptote to 1=u near
the boundary,

fnðuÞ ¼ cþfþðuÞ þ c�f�ðuÞ ! 1

u
; u ! 1: (11)

This choice amounts to choosing zero bare mass for the
dual flavor. The coefficient of the 1=u term is proportional
to the condensate of the dual theory. Denoting the conden-

sate as �, the solution in the linear regime is yðrÞ ¼
�ð�2 þ B2Þ�1=4�fnðuÞ.
For small u and small �, fn can be expanded

fnðuÞ �
�
C1

i�
þ C2

�
uð1�i�Þ=2 þ

�
�C1

i�
þ C2

�
uð1�i�Þ=2

¼ ffiffiffi
u

p �
2C2 cos

�
�

2
lnu

�
� 2C1

�
sin

�
�

2
lnu

��
; (12)

where
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C1 ¼ �2ð1=4Þ
23=4�3=2

; C2 ¼ 21=4�2ð5=4Þðln256� �Þ
�3=2

:

(13)

To leading order in �, we rewrite Eq. (12) as

yðrÞ ¼ 2C1

ð�2 þ B2Þ3=8 �
ffiffiffi
r

p
�

sin

�
�

2
ln
r

r1

�
; (14)

r1 ¼ ð�2 þ B2Þ1=4 exp
�
2C2

C1

�
: (15)

To match the core and linear solutions at r ¼ �, the
argument of the sin in Eq. (14) has to make� between r0 �
� and r1 �

ffiffiffiffi
B

p
. To exponential accuracy, we then have ��

e�2�=�. Comparing Eqs. (8) and (14), we find

�� ffiffiffi
�

p � e��=�: (16)

Thus, the phase transition in the D3=D5 system obeys
BKT scaling. The exponent as well as the prefactors can
also be found by matching both y and y0 at �,

� ¼ �N
a1
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ B2

q
exp

�
��

�
þ C2

C1

� a0
2a1

þOð�Þ
�
:

(17)

We also compare this result to numerical data in Fig. 1.
The way we matched the core and the tail of the embed-

ding makes it clear that there exists an infinite set of
‘‘Efimov extrema,’’ which we name for their resemblance
to Efimov states [24]. Indeed, the most general match has
an argument n� in the sin of Eq. (14) between r� r0 and
r� r1, for n a positive integer. Matching y and y0 at r ¼ �,
we find a condensate corresponding to these extrema of

�n � e�n�=�, where �1 is the condensate for the simplest
embedding above. The additional extrema are not ground
states, however: denoting the free energy of the trivial
embedding as F0, the free energy of the n-th extremum

goes like F0 � Fn � e�2�n=�, so the n ¼ 1 embedding is
the ground state. The infinite tower of extrema, spaced by
the same factor expð�2�=�Þ, is reminiscent of the Efimov
states.

We next examine the D3=D5 system at finite tempera-
ture T. To do so, we embed the D5 probes in an AdS-
Schwarzschild black hole geometry. The embedding equa-
tions can now only be solved numerically. However, at any
temperature the magnetic field does not contribute in the
effective AdS2 region in the IR. We could therefore predict
that the BKT scaling is lost for T > 0. We numerically
solved the embedding equations at a number of different
temperatures. (The techniques employed are similar to
those used in Ref. [22].) We plot some of our results for
the condensate in Fig. 1. At fixed finite temperature, we
find that there is still a chiral symmetry breaking transition
but that it is a mean-field second-order one. Far away from
the transition, we recover the exponential BKT scaling at
zero temperature.

Lifshitz systems.—In the example that has been just
considered, the BKT scaling arises from an IR AdS2 region
and the existence of a scalar with mass squared crossing the
BF bound at the transition. We may expect the BKT scaling
to be present in many other cases. We now demonstrate that
the BKT scaling indeed controls the critical behavior in
phase transitions in a rather large class of models.
Our models are built on the so-called Lifshitz geome-

tries [25], which are invariant under anisotropic scaling,
t ! �zt, ~x ! �~x. Under holography, a geometry of this
type is conjectured to be dual to a scale-invariant boundary
field theory with dynamic critical exponent z. Constructing
explicit Lifshitz solutions from string theory is quite in-
volved [11]; our approach here is phenomenological.
Nevertheless, once a few conditions (to be specified below)
are satisfied, the BKT scaling is rather generic—which
seems to indicate that it should occur in string-theoretical
realizations of Lifshitz geometries as well.
We consider probe branes with an induced metric

P½g� ¼ �ðr2 þ y2Þzdt2 þ ðr2 þ y2Þd~x2

þ dr2ð1þ y02Þ þ r2gint
r2 þ y2

(18)

and constant dilaton. Here, r is the ‘‘radial coordinate’’ of
the geometry, ~x 2 RD is a spatial vector, gint is the metric
on a wrapped space of dimension k, and y ¼ yðrÞ is the
profile of the branes. The D3=D5 system corresponds to
z ¼ 1 and D ¼ k ¼ 2.
We now turn on a density and magnetic field in the field

theory, dual to Uð1Þ field strengths on the branes.
Assuming that Chern-Simons terms play no role, the action
of the probes at fixed density is

0.008 0.010 0.012 0.014 0.016
0

1. 10 6

2. 10 6

3. 10 6

4. 10 6
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B 1

7

d

FIG. 1 (color online). A plot of the condensate as a function of
magnetic field at zero and finite temperature near the zero-
temperature transition. The dashed black line indicates zero-
temperature numerical data and the solid blue line our predic-
tion, Eq. (17), computed further toOð�3Þ. The color dashed lines
represent numerical data at temperatures T ¼ 2

��
1=2 � 10�11

(left) and T ¼ 2
��

1=2 � 10�10 (right). At any nonzero tempera-

ture, the condensate scales with a mean-field exponent near the
transition, asymptoting to the BKT scaling further away.
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~S ¼ �N z

Z
drRz�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ r2k

R2ðk�DÞ

�
1þ B2

R4

�s
;

(19)

where we have defined R2 � r2 þ y2, N z is a prefactor,
and � is a rescaled density d ¼ N z�.

As before, we attempt to find the location of the phase
transition by looking at small fluctuations around the trivial
embedding yðrÞ ¼ 0. In the UV, y=r is a massive scalar in
AdSzþDþ1, corresponding to an operator with dimension

� ¼ ðzþDÞ=2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðzþ 2Þ2 � 4k
p

=2þ 1 in field theory.
At small r, y=r fluctuates in two different ways depending
on the value of D. For two spatial dimensions, y=r fluc-
tuates as a m2 ¼ �kB2=ðB2 þ �2Þ scalar in AdSzþ1; for
D> 2, y=r behaves like a m2 ¼ 0 scalar in AdSzþ1. The
holographic BKT transition is then only possible for D ¼
2, where a density and magnetic field have the same
dimension. The transition occurs at

�

Bc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k� z2

p
z

; (20)

for which the bound 4k > z2 must also be satisfied. This is
also the bound for which a magnetic field at zero density
will break chiral symmetry.

Using the same method as employed in theD3=D5 case,
we study zero bare mass by taking y to be normalizable at
large r with y� 1=r��1. Holographic renormalization re-
lates the coefficient of this term to the condensate �, which
we find to be

� ¼ �N z

a1
C1

ð�2 þ B2Þ�=4ð�� 1Þ

� exp

�
��

�
þ zC2

C1

� za0
2a1

�
; (21)

where C1, C2 are complicated constants that depend on �
and z, and a0, a1 are the asymptotic data of a core solution
to which we match. We can therefore find BKT scaling for
any dynamical exponent, provided that the magnetic field
can break chiral symmetry.

Discussion.—We therefore see that holographic phase
transitions in 2þ 1 dimensions, with the ratio of the mag-
netic field and the density as a control parameter, may
generally be of the BKT type. It would be extremely
interesting to find such a BKT transition away from the
large N and strong coupling limits.

The existence of an infinite number of ‘‘Efimov vacua’’
is clearly related to the breakdown of the Landau’s theory.
In Landau’s theory of phase transitions, the order parame-
ter is the only low-energy degree of freedom. In our case,

the role of the order parameter is played by the whole
function yðrÞ, where r is usually interpreted as the energy
scale. One needs to further investigate the low-energy
effective theory of the D3=D5 system.
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