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In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a
Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By
introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary
bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely

related to entanglement entropy.
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Tolman mass is one of the standard notions of quasilocal
mass in common use in general relativity [1]. Using clas-
sical general relativity, this quasilocal Tolman mass can, in
any static spacetime (either with or without a black hole
region), be reduced to a flux integral of (generalized)
surface gravity across the boundary of the region of inter-
est. (This is closely related to the classical laws of black
hole mechanics [2].) General relativistic thermodynamics,
together with a minimal appeal to quantum physics as
embodied in the Unruh effect [3], is then sufficient to
develop elementary but powerful bounds on a suitably
defined notion of quasilocal entropy—bounds very similar
in spirit to the holographic bound [4-8], and closely related
to entanglement entropy [9].

In a static spacetime where the metric is taken to be of
the form

ds®> = —e ?Yar + gijdxidxf, ()

the Tolman mass contained in a region () is defined in
terms of the orthonormal components of stress energy by
first taking p = Ty and p = % tr{T};}; and then setting

mz(Q) = [ﬂ J=8adp + 3p}dx. 2)

The Einstein equations then imply the purely geometrical
statement

1
my(Q) = pp fﬂ V= 8aRyd x. 3)

The Tolman mass is intimately related to the Komar mass
[10], though we will not be phrasing any of the discussion
below in terms of Killing vectors. It is a very old result,
going back at least as far as Landau-Lifshitz [11] that in
any stationary metric

R) = _6 (V=848"Ty). (4)
(Here a € {0, 1,2, 3}; i €1, 2, 3}.) Adopting the manifest
static coordinates of Eq. (1), and then going to an ortho-
normal basis, this is more simply phrased as
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Ryo = 7\/— 9,(v=828"Ty). ®))

To get a clean physical interpretation of this formula,
consider a fiducial observer (FIDO) with 4-velocity
Ve = (/1] 0,0,0). (6)
By definition the 4-acceleration of these FIDOs is
A® = (VyV)e = VbV, Ve = VO(gyVa + T V©)

= 18010y 18%°1 = 1g%IT¢,. (7)

But then, since V is 4-orthogonal to A, we have
AY =0; = 1g%1og; (®)

where A’ are the three spatial components of
4-acceleration. Therefore in any static spacetime, in the
region outside the horizon, the Landau-Lifshitz result is

1 A
Ryy = ——=0:(/—g4A"). 9
00 4
a7

Then for any 3-volume () (if a horizon is present then for
convenience we confine ourselves to a region that lies
outside the horizon) we can use ordinary partial derivative
integration by parts to deduce

fQ V= 8Ryd’x = fQ 9:(\/—gsADd’x
- fQ 0:(JTote YA dx
Zf {eiWAi}ﬁi\/Edzx, (10)
a0

where 7 is the unit normal (defined in terms of the 3-metric
gij)» and /g5 is the induced area measure on 9{). Define a
(generalized) surface gravity (3-vector) and its norm by

K= ‘/ginin =V

“redshifted” 4-acceleration of the FIDOs,

K= e_WAi; giinAj- (1D)

This is just the
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and is a natural generalization of surface gravity, not just
for any event horizon that might be present, but also
applying to FIDOs skimming along the boundary 9(). In
terms of this generalized surface gravity we now have
1
K fiJgd*x = — K

T Q)

(12)

Defining an average surface gravity k(9(}), a total area
A(9Q), and temporarily assuming we have no black hole
regions to deal with, we see

mp(Q) = i f kd(area) =
47T Q)

k(0Q) X A(6Q)
4qr '
So for any (static) horizonless object such as a star or
planet (or monster [12], or gravastar [13], or black star
[14], or quasiblack hole [15]), we can bound its total
Tolman mass in terms quantities measurable on its surface:
k(0Q) X A(0Q)
4 '
This gives us a very general bound on the Tolman mass.
Now we introduce thermodynamics: Consider the Euler
relation (essentially the Gibbs-Duhem relation) for the
entropy density of matter—we are thinking of some equi-
librium collection of atoms—molecules—fields making up a
star—planet—-monster—gravastar—black star—quasiblack
hole. (No event horizons for now.) Then

+ —
s=u’ (15)
T

where (as previously) p = % tr{T;;}. The total entropy due
to matter inside any specified 3-volume is

+ —
S(Q) = f N f JEPP T B s 16
Q Q T
But the Tolman equilibrium conditions are [1,16—18]

T=800 = Tws M/~ 800 = Moo’ 17)

where we assume asymptotic flatness and without loss of
generality set goo — 1 at spatial infinity. Then

1 o0
S(@Q) = [ J=&adp + pidPx — Beo / Jgindx,
Too Q ToO Q
(18)

13)

mp(Q) =

(14)

that is

S =7 [ Ele + phx -

But thermodynamic stability requires @ = 0, so

1
S(0) = fﬂ J=Tdlp + piix. (20)

19)

Furthermore, in any system such as a star or planet p > 0
throughout the interior so we have

1
S(0) = - fﬂ JEe £ 3k @)

which implies

mT(Q)_

S(Q) = T

(22)
That is, the entropy inside any equilibrium star—planet or
monster—gravastar—black star—quasiblack hole is bounded
by the Tolman mass divided by the temperature (normal-
ized at infinity). By our theorem above

7(00) X A(0Q)

s
S(Q) = = :

(23)

where so far we have only used basic thermodynamics and
no curved space quantum field theory.

Furthermore, due to the existence of the Unruh accel-
eration radiation phenomenon [3], we can argue that an
observer at position x on the boundary 9{) will see a
minimum locally measured temperature of

[[AG)I]
T()C) = TUnruh(x) = 2 ’ (24)
T
which when redshifted to infinity implies
K(x)
Tow = - TUne . 25
){g%{ 800X Typrun(X)} = m%{ } (25)

So the equilibrium temperature of a star—planet-monster—
gravastar-black star—quasiblack hole confined inside a
boundary 9{) must satisfy

. = KO (26)
2
So finally
S(Q) = AGL) Q27)

That is, under very mild conditions, and even with a
number of suboptimal inequalities being used in the deri-
vation, we have nevertheless been able to see that the total
entropy of a star—planet-monster—gravastar—black star—
quasiblack hole is bounded by half its area—this is very
close to the holographic bound [4], which corresponds to
S(Q) = %ﬂl(aﬂ), and also seems closely related to the
generalized second law [5] and to the Bekenstein bound
S(Q) = 27E(Q)R(Q) [6]. This is also similar in spirit to
Srednicki’s entanglement entropy [9]—we are bounding
the entropy in terms of the visible surface 9{) without
looking “‘inside” (). Srednicki’s entanglement entropy
argument would yield S(2) « A (9()) with an unknown
and cutoff-dependent proportionality constant. While our
argument provides a precise numerical value for the pro-
portionality constant, 2, unfortunately we have not yet
been able to improve the proportionality constant to the %
one expects based on the holographic bound. On the other
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hand, the very mildness of the assumptions used in the
bound makes it of some independent interest in its own
right.

Fundamentally the reason for this 1 < I mismatch is
because we are looking at an uncollapsed distribution of
matter, where temperature has its normal interpretation as
an intensive variable, and the Euler relation takes the usual
uncollapsed form p = T's + ..., which for a small element
of matter integratesto M = T'S + .... In contrast, once the
matter collapses to a black hole, then (considering a
Schwarzschild black hole for simplicity) T = 1/(87M),
so the temperature is no longer an intensive variable.
Similarly the Bekenstein entropy S = %ﬂl = 47rM? is no
longer an extensive variable, and the Euler relation is
modified to yield M = 27§ + .... It is exactly this factor
of 2 in the Euler relation for collapsed matter that prevents
us from improving our entropy bound for uncollapsed
matter to the tighter bound expected for collapsed matter.

As a consistency check consider a static spherically
symmetric geometry. Without loss of generality choose
coordinates to write the metric in the form
B Zm(r)] JP -

r

dr?
1—2m(r)/r
+ r*{d6? + sin*0d $>}. (28)

ds? = —e*m(’)[l

Note that with these conventions

V=8 = /80083 = ¢ Pr’sing — dmrfe”®. (29)

We implicitly assume asymptotic flatness, and normalize
to ®(00) = 0. The Killing horizon is defined by the loca-
tion where 2m(r)/r = 1, that is

2m(ry) = ry. (30)
Then it is an old result [19] that at the horizon
e ®u(1 —2mh)

Ky =

By looking at integral curves of the Killing vector, it is easy
to see that the 4-acceleration of the FIDOs is
m(r) —rm'(r)

2m(r)
—— 1’ - .
r’J1 =2m(r)/r Iy r } G2

A “‘red-shifted”” normalized “‘generalized surface gravity”
can now be defined for arbitrary r by taking

k(r) = J=80A(r) = e ®O1 = 2m(r)/rA(r), (33)

A(F) = {

SO
K(r) = e_q’(’){M— (I)’(r)[l - zm_r(r)]} (34)

Note that this is now not the surface gravity of the black
hole region, but rather the surface gravity of an arbitrary
“virtual sphere” of radius r. Note also that this definition is
compatible with that given for the general static case

above. (In a different direction this expression is also
compatible with that for a time-dependent spherically
symmetric situation as considered in [20].) As r— ry
this tends to the appropriate limit. For all r this has the
standard interpretation in terms of the tension in a massless
rope supporting a small mass at radius r. A very standard
computation now yields [21]

~_m/(r) _ m(r) (. 2m(n)7.
 Am?’ T 4m? Awr I:l r :l’
by — 8%7{_ m/;(r) — o 1+ m(r)/: —3m'(r)
_ 1" N2 _ zm(r)
(@) + (@] 1 - 2] (39)

By explicit integration one obtains (for any r)
]: e~ PNp + p, + 2prtdr = r*k(r). (36)

That is, in spherical symmetry the partial Tolman mass of a
star—planet out to radius r has the very explicit form

mr(r) = Pi(r)

= e_q’(r){m(r) —rm'(r) — (I)’(r)rz[l — 2m—r(r)i|}

(37)
Using
k(r) = e‘b(’){m(zr) + 47Trp,}, (38)
r
it may be advantageous to rephrase this as
mp(r) = e {m(r) + 4mr3p,}. (39)

The entropy inequalities still carry through in essentially
the same way: For any virtual sphere of radius r we have

mr(r) _ k()

S(r) = T T (40)
By considering FIDOs at radius r, the Unruh effect forces
r.="" (1)

so that
S(r) = 2mr?, (42)

with this inequality now holding for virtual spheres at
arbitrary radii r. The inequality is again suboptimal, (based
on the holographic bound [4] we would have expected
S(r) = mr?), but on the other hand the inequality is ex-
tremely robust and easy to derive.

Now consider the situation where the region () contains
a black hole region B with horizon 9B. It makes sense to
now define

(@ =m(B)+ [ T + 3k @3)
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where m;(B) is the so-far undefined Tolman mass to be

attributed to the black hole region B. Appeal to the flux

integral theorem, noting that 9({2 — B) = 9{) — 9B, and

using the zeroth law of black hole mechanics to assert that

k(9B) is constant on the horizon 9B [2], to write

mp(Q) = my(B) + [ 7 idA - KOBAGB)
4w Joa 4

o
(44)

If we now demand that my({)) — mapy at spatial infinity
then we uniquely have

0B)A(0B
mT(B) = %, (45)
and
1
() = [d R d A (46)

That is, with a suitable definition of m;(B) we can extend
our flux formula for m;({2) to situations where () contains
a black hole region B.

Finally, consider the total entropy

S(Q) = S(B) + /(H; N 47

which we have divided into a geometrical entropy associ-
ated with the black hole region and a thermodynamic
entropy associated with the surrounding matter. Again
assuming internal equilibrium in the ) — B region, with
non-negative pressure p = 0 and non-negative chemical
potential u = 0, we obtain the bound

mT(Q) - mT(B).

S(Q) = S(B) + 7 (48)
But then our flux theorem gives w
SO = S(B) + faﬂl-é'ﬁdﬂ:;TK(aB)ﬂ(aﬂ), )
implying )
Q) = 5(B) + KOVACQD ~ kGBAGE)

47T

But the very fact that we now know () contains a black hole
region B implies that we can see down to the horizon 93B.
Appealing to the Unruh argument, then at least in normal
situations where the surface gravity increases as one moves
inwards, Ts = 5= «(3B). Therefore
k(0Q) A(9Q)
= —+ S(B) -
k(0B) 2 (B)
But then appealing to the ordinary Bekenstein result
S(B) = A(3B), but without any need to invoke the
generalized second law or holographic bound, we have

k(0Q) A(9Q)
k(@B) 2
This is now a considerably tighter bound on the total

S(Q)

@. (51)

S(Q) = (52)

entropy inside the region (), using both information from
the surface d{, plus some information about the black hole
region B.

In summary, we have developed a number of entropy
bounds that are very minimalist in the physics ingredients
they require. The Einstein equations are used, mild con-
ditions are placed on pressure and chemical potential, and
the Unruh effect is invoked. Even with these rather mini-
mal conditions, quite general and robust bounds can be
extracted.
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