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In any static spacetime the quasilocal Tolman mass contained within a volume can be reduced to a

Gauss-like surface integral involving the flux of a suitably defined generalized surface gravity. By

introducing some basic thermodynamics and invoking the Unruh effect one can then develop elementary

bounds on the quasilocal entropy that are very similar in spirit to the holographic bound, and closely

related to entanglement entropy.
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Tolman mass is one of the standard notions of quasilocal
mass in common use in general relativity [1]. Using clas-
sical general relativity, this quasilocal Tolman mass can, in
any static spacetime (either with or without a black hole
region), be reduced to a flux integral of (generalized)
surface gravity across the boundary of the region of inter-
est. (This is closely related to the classical laws of black
hole mechanics [2].) General relativistic thermodynamics,
together with a minimal appeal to quantum physics as
embodied in the Unruh effect [3], is then sufficient to
develop elementary but powerful bounds on a suitably
defined notion of quasilocal entropy—bounds very similar
in spirit to the holographic bound [4–8], and closely related
to entanglement entropy [9].

In a static spacetime where the metric is taken to be of
the form

ds2 ¼ �e�2�dt2 þ gijdx
idxj; (1)

the Tolman mass contained in a region � is defined in
terms of the orthonormal components of stress energy by
first taking � ¼ T0̂ 0̂ and p ¼ 1

3 trfT{̂ |̂g; and then setting

mTð�Þ ¼
Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ 3pgd3x: (2)

The Einstein equations then imply the purely geometrical
statement

mTð�Þ ¼ 1

4�

Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p

R0̂ 0̂d
3x: (3)

The Tolman mass is intimately related to the Komar mass
[10], though we will not be phrasing any of the discussion
below in terms of Killing vectors. It is a very old result,
going back at least as far as Landau-Lifshitz [11] that in
any stationary metric

R0
0 ¼

1ffiffiffiffiffiffiffiffiffiffi�g4
p @ið ffiffiffiffiffiffiffiffiffiffi�g4

p
g0a�i

a0Þ: (4)

(Here a 2 f0; 1; 2; 3g; i 2 f1; 2; 3g.) Adopting the manifest
static coordinates of Eq. (1), and then going to an ortho-
normal basis, this is more simply phrased as

R0̂ 0̂ ¼
1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

g00�i
00Þ: (5)

To get a clean physical interpretation of this formula,
consider a fiducial observer (FIDO) with 4-velocity

Va ¼ ð
ffiffiffiffiffiffiffiffiffiffi
jg00j

q
; 0; 0; 0Þ: (6)

By definition the 4-acceleration of these FIDOs is

Aa ¼ ðrVVÞa ¼ VbrbV
a ¼ V0ð@0Va þ �a

c0V
cÞ

¼
ffiffiffiffiffiffiffiffiffiffi
jg00j

q
�a

00

ffiffiffiffiffiffiffiffiffiffi
jg00j

q
¼ jg00j�a

00: (7)

But then, since V is 4-orthogonal to A, we have

A0 ¼ 0; Ai ¼ jg00j�i
00; (8)

where Ai are the three spatial components of
4-acceleration. Therefore in any static spacetime, in the
region outside the horizon, the Landau-Lifshitz result is

R0̂ 0̂ ¼
1ffiffiffiffiffiffiffiffiffiffi�g4

p @ið ffiffiffiffiffiffiffiffiffiffi�g4
p

AiÞ: (9)

Then for any 3-volume � (if a horizon is present then for
convenience we confine ourselves to a region that lies
outside the horizon) we can use ordinary partial derivative
integration by parts to deduceZ

�

ffiffiffiffiffiffiffiffiffiffi�g4
p

R0̂ 0̂d
3x ¼

Z
�
@ið ffiffiffiffiffiffiffiffiffiffi�g4

p
AiÞd3x

¼
Z
�
@ið ffiffiffiffiffi

g3
p fe��AigÞd3x

¼
Z
@�

fe��Aign̂i ffiffiffiffiffi
g2

p
d2x; (10)

where n̂ is the unit normal (defined in terms of the 3-metric
gij), and

ffiffiffiffiffi
g2

p
is the induced area measure on @�. Define a

(generalized) surface gravity (3-vector) and its norm by

�i ¼ e��Ai; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij�

i�j
q

¼ e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijA

iAj
q

: (11)

This is just the ‘‘redshifted’’ 4-acceleration of the FIDOs,
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and is a natural generalization of surface gravity, not just
for any event horizon that might be present, but also
applying to FIDOs skimming along the boundary @�. In
terms of this generalized surface gravity we now have

mTð�Þ ¼ 1

4�

Z
@�

�in̂i
ffiffiffiffiffi
g2

p
d2x ¼ 1

4�

Z
@�

~� � n̂dA:

(12)

Defining an average surface gravity ��ð@�Þ, a total area
Að@�Þ, and temporarily assuming we have no black hole
regions to deal with, we see

mTð�Þ � 1

4�

Z
@�

�dðareaÞ ¼ ��ð@�Þ �Að@�Þ
4�

: (13)

So for any (static) horizonless object such as a star or
planet (or monster [12], or gravastar [13], or black star
[14], or quasiblack hole [15]), we can bound its total
Tolman mass in terms quantities measurable on its surface:

mTð�Þ � ��ð@�Þ �Að@�Þ
4�

: (14)

This gives us a very general bound on the Tolman mass.
Now we introduce thermodynamics: Consider the Euler

relation (essentially the Gibbs-Duhem relation) for the
entropy density of matter—we are thinking of some equi-
librium collection of atoms–molecules–fields making up a
star–planet–monster–gravastar–black star–quasiblack
hole. (No event horizons for now.) Then

s ¼ �þ p��n

T
; (15)

where (as previously) p ¼ 1
3 trfT{̂ |̂g. The total entropy due

to matter inside any specified 3-volume is

Sð�Þ ¼
Z
�

ffiffiffiffiffi
g3

p
sd3x ¼

Z
�

ffiffiffiffiffi
g3

p �þ p��n

T
d3x: (16)

But the Tolman equilibrium conditions are [1,16–18]

T
ffiffiffiffiffiffiffiffiffiffiffi�g00

p ¼ T1; �
ffiffiffiffiffiffiffiffiffiffiffi�g00

p ¼ �1; (17)

where we assume asymptotic flatness and without loss of
generality set g00 ! 1 at spatial infinity. Then

Sð�Þ ¼ 1

T1

Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ pgd3x��1

T1

Z
�

ffiffiffiffiffi
g3

p
nd3x;

(18)

that is

Sð�Þ ¼ 1

T1

Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ pgd3x��1N

T1
: (19)

But thermodynamic stability requires � � 0, so

Sð�Þ � 1

T1

Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ pgd3x: (20)

Furthermore, in any system such as a star or planet p > 0
throughout the interior so we have

Sð�Þ � 1

T1

Z
�

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ 3pgd3x; (21)

which implies

Sð�Þ � mTð�Þ
T1

: (22)

That is, the entropy inside any equilibrium star–planet or
monster–gravastar–black star–quasiblack hole is bounded
by the Tolman mass divided by the temperature (normal-
ized at infinity). By our theorem above

Sð�Þ � ��ð@�Þ �Að@�Þ
4�T1

; (23)

where so far we have only used basic thermodynamics and
no curved space quantum field theory.
Furthermore, due to the existence of the Unruh accel-

eration radiation phenomenon [3], we can argue that an
observer at position x on the boundary @� will see a
minimum locally measured temperature of

TðxÞ � TUnruhðxÞ ¼ jjAðxÞjj
2�

; (24)

which when redshifted to infinity implies

T1 � max
x2@�

f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g00ðxÞ

q
TUnruhðxÞg ¼ max

x2@�

�
�ðxÞ
2�

�
: (25)

So the equilibrium temperature of a star–planet–monster–
gravastar–black star–quasiblack hole confined inside a
boundary @� must satisfy

T1 � ��ð@�Þ
2�

: (26)

So finally

Sð�Þ � Að@�Þ
2

: (27)

That is, under very mild conditions, and even with a
number of suboptimal inequalities being used in the deri-
vation, we have nevertheless been able to see that the total
entropy of a star–planet–monster–gravastar–black star–
quasiblack hole is bounded by half its area—this is very
close to the holographic bound [4], which corresponds to
Sð�Þ � 1

4Að@�Þ, and also seems closely related to the

generalized second law [5] and to the Bekenstein bound
Sð�Þ � 2�Eð�ÞRð�Þ [6]. This is also similar in spirit to
Srednicki’s entanglement entropy [9]—we are bounding
the entropy in terms of the visible surface @� without
looking ‘‘inside’’ �. Srednicki’s entanglement entropy
argument would yield Sð�Þ / Að@�Þ with an unknown
and cutoff-dependent proportionality constant. While our
argument provides a precise numerical value for the pro-
portionality constant, 1

2 , unfortunately we have not yet

been able to improve the proportionality constant to the 1
4

one expects based on the holographic bound. On the other
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hand, the very mildness of the assumptions used in the
bound makes it of some independent interest in its own
right.

Fundamentally the reason for this 1
2 $ 1

4 mismatch is

because we are looking at an uncollapsed distribution of
matter, where temperature has its normal interpretation as
an intensive variable, and the Euler relation takes the usual
uncollapsed form � ¼ Tsþ . . . , which for a small element
of matter integrates toM ¼ TSþ . . . . In contrast, once the
matter collapses to a black hole, then (considering a
Schwarzschild black hole for simplicity) T ¼ 1=ð8�MÞ,
so the temperature is no longer an intensive variable.
Similarly the Bekenstein entropy S ¼ 1

4A ¼ 4�M2 is no

longer an extensive variable, and the Euler relation is
modified to yield M ¼ 2TSþ . . . . It is exactly this factor
of 2 in the Euler relation for collapsed matter that prevents
us from improving our entropy bound for uncollapsed
matter to the tighter bound expected for collapsed matter.

As a consistency check consider a static spherically
symmetric geometry. Without loss of generality choose
coordinates to write the metric in the form

ds2 ¼ �e�2�ðrÞ
�
1� 2mðrÞ

r

�
dt2 þ dr2

1� 2mðrÞ=r
þ r2fd�2 þ sin2�d�2g: (28)

Note that with these conventionsffiffiffiffiffiffiffiffiffiffi�g4
p ¼ ffiffiffiffiffiffiffiffiffiffiffi�g00

p ffiffiffiffiffi
g3

p ¼ e��r2 sin� ! 4�r2e��: (29)

We implicitly assume asymptotic flatness, and normalize
to �ð1Þ ¼ 0. The Killing horizon is defined by the loca-
tion where 2mðrÞ=r ¼ 1, that is

2mðrHÞ ¼ rH: (30)

Then it is an old result [19] that at the horizon

�H ¼ e��H ð1� 2m0
HÞ

2rH
: (31)

By looking at integral curves of the Killing vector, it is easy
to see that the 4-acceleration of the FIDOs is

AðrÞ ¼
�
mðrÞ � rm0ðrÞ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ=rp ��0ðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ

r

s �
: (32)

A ‘‘red-shifted’’ normalized ‘‘generalized surface gravity’’
can now be defined for arbitrary r by taking

�ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi�g00
p

AðrÞ ¼ e��ðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2mðrÞ=rp

AðrÞ; (33)

so

�ðrÞ¼e��ðrÞ
�
mðrÞ�rm0ðrÞ

r2
��0ðrÞ

�
1�2mðrÞ

r

��
: (34)

Note that this is now not the surface gravity of the black
hole region, but rather the surface gravity of an arbitrary
‘‘virtual sphere’’ of radius r. Note also that this definition is
compatible with that given for the general static case

above. (In a different direction this expression is also
compatible with that for a time-dependent spherically
symmetric situation as considered in [20].) As r ! rH
this tends to the appropriate limit. For all r this has the
standard interpretation in terms of the tension in a massless
rope supporting a small mass at radius r. A very standard
computation now yields [21]

� ¼ m0ðrÞ
4�r2

; pr ¼ �m0ðrÞ
4�r2

��0ðrÞ
4�r

�
1� 2mðrÞ

r

�
;

pt ¼ 1

8�

�
�m00ðrÞ

r
��0ðrÞ 1þmðrÞ=r� 3m0ðrÞ

r

� ½�00ðrÞ þ ð�0Þ2�
�
1� 2mðrÞ

r

��
: (35)

By explicit integration one obtains (for any r)Z r

0
e��ðrÞf�þ pr þ 2ptgr2dr ¼ r2�ðrÞ: (36)

That is, in spherical symmetry the partial Tolman mass of a
star–planet out to radius r has the very explicit form

mTðrÞ ¼ r2�ðrÞ

¼ e��ðrÞ
�
mðrÞ � rm0ðrÞ ��0ðrÞr2

�
1� 2mðrÞ

r

��
:

(37)

Using

�ðrÞ ¼ e��ðrÞ
�
mðrÞ
r2

þ 4�rpr

�
; (38)

it may be advantageous to rephrase this as

mTðrÞ ¼ e��ðrÞfmðrÞ þ 4�r3prg: (39)

The entropy inequalities still carry through in essentially
the same way: For any virtual sphere of radius r we have

SðrÞ � mTðrÞ
T1

¼ �ðrÞr2
T1

: (40)

By considering FIDOs at radius r, the Unruh effect forces

T1 � �ðrÞ
2�

; (41)

so that

SðrÞ � 2�r2; (42)

with this inequality now holding for virtual spheres at
arbitrary radii r. The inequality is again suboptimal, (based
on the holographic bound [4] we would have expected
SðrÞ � �r2), but on the other hand the inequality is ex-
tremely robust and easy to derive.
Now consider the situation where the region � contains

a black hole region B with horizon @B. It makes sense to
now define

mTð�Þ ¼ mTðBÞ þ
Z
��B

ffiffiffiffiffiffiffiffiffiffi�g4
p f�þ 3pgd3x; (43)
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where mTðBÞ is the so-far undefined Tolman mass to be
attributed to the black hole region B. Appeal to the flux
integral theorem, noting that @ð��BÞ ¼ @�� @B, and
using the zeroth law of black hole mechanics to assert that
�ð@BÞ is constant on the horizon @B [2], to write

mTð�Þ ¼ mTðBÞ þ 1

4�

Z
@�

~� � n̂dA� �ð@BÞAð@BÞ
4�

:

(44)

If we now demand that mTð�Þ ! mADM at spatial infinity
then we uniquely have

mTðBÞ ¼ �ð@BÞAð@BÞ
4�

; (45)

and

mTð�Þ ¼ 1

4�

Z
@�

~� � n̂dA: (46)

That is, with a suitable definition of mTðBÞ we can extend
our flux formula for mTð�Þ to situations where� contains
a black hole region B.

Finally, consider the total entropy

Sð�Þ ¼ SðBÞ þ
Z
��B

ffiffiffiffiffi
g3

p
sd3x; (47)

which we have divided into a geometrical entropy associ-
ated with the black hole region and a thermodynamic
entropy associated with the surrounding matter. Again
assuming internal equilibrium in the ��B region, with
non-negative pressure p � 0 and non-negative chemical
potential � � 0, we obtain the bound

Sð�Þ � SðBÞ þmTð�Þ �mTðBÞ
T1

: (48)

But then our flux theorem gives

Sð�Þ � SðBÞ þ
R
@� ~� � n̂dA� �ð@BÞAð@BÞ

4�T1
; (49)

implying

Sð�Þ � SðBÞ þ ��ð@�ÞAð@�Þ � �ð@BÞAð@BÞ
4�T1

: (50)

But the very fact that we now know� contains a black hole
region B implies that we can see down to the horizon @B.
Appealing to the Unruh argument, then at least in normal
situations where the surface gravity increases as one moves
inwards, T1 � 1

2��ð@BÞ. Therefore

Sð�Þ � ��ð@�Þ
�ð@BÞ

Að@�Þ
2

þ SðBÞ �Að@BÞ
2

: (51)

But then appealing to the ordinary Bekenstein result
SðBÞ ¼ 1

4Að@BÞ, but without any need to invoke the

generalized second law or holographic bound, we have

Sð�Þ � ��ð@�Þ
�ð@BÞ

Að@�Þ
2

: (52)

This is now a considerably tighter bound on the total

entropy inside the region �, using both information from
the surface @�, plus some information about the black hole
region B.
In summary, we have developed a number of entropy

bounds that are very minimalist in the physics ingredients
they require. The Einstein equations are used, mild con-
ditions are placed on pressure and chemical potential, and
the Unruh effect is invoked. Even with these rather mini-
mal conditions, quite general and robust bounds can be
extracted.
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