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Nonergodic renewal processes have recently been shown by several authors to be insensitive to periodic

perturbations, thereby apparently sanctioning the death of linear response, a building block of nonequi-

librium statistical physics. We show that it is possible to go beyond the ‘‘death of linear response’’ and

establish a permanent correlation between an external stimulus and the response of a complex network

generating nonergodic renewal processes, by taking as stimulus a similar nonergodic process. The ideal

condition of 1=f noise corresponds to a singularity that is expected to be relevant in several experimental

conditions.
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There has been a surge of interest in understanding the
dynamics of complex networks over the past decade with
studies ranging from the topology of transportation webs to
the connectivity of communication meshes to the dynamics
of neuron networks. Most recently, the importance of the
nascent theory of information exchange between complex
networks has become evident.

In living neural networks, the connection between func-
tion and information transport is studied with experimental
techniques of increasing efficiency [1] from which an
attractive perspective is emerging; i.e., these complex net-
works live in a state of phase transition (collective, co-
operative behavior), a critical condition that has the effect
of optimizing information transmission [2]. From the stud-
ies of complex networks, it is evident that the statistical
distributions for network properties are inverse power laws
and that the power-law index is a measure of the degree of
complexity. Intimate connections exist between neural
organization and information theory, the empirical laws
of perception [3], and the production of 1=f noise [4], with
the surprising property that 1=f signals are encoded and
transmitted by sensory neurons with higher efficiency
than white noise signals [5]. Although 1=f noise produc-
tion is interpreted by psychologists as a manifestation of
human cognition [6], and by neurophysiologists [7] as a
sign of neural activity, a theory explaining why this form of
noise is important for communication purposes does not
exist yet.

The well known stochastic resonance phenomenon [8]
describes the transport of information through a random
medium, obeying the prescriptions of Kubo linear response
theory (LRT) [9], being consequently limited [10] to the
stationary equilibrium condition. There are many complex
networks that generate 1=f noise and violate this condi-
tion: Two relevant examples are blinking quantum dots
[11] and liquid crystals [12]. The non-Poisson nature of

the renewal processes generated in these examples [13] is
accompanied by ergodicity breakdown and nonstationary
behavior [14].
The response of nonstationary networks to harmonic

perturbation has recently been found by many authors
[15–20] to fade away with time, an effect called death of
linear response [15]. This result seems to call into question
one of the fundamental theories of statistical physics, that
being the fluctuation-dissipation theorem and the resulting
LRT of Kubo [9]. The intuitive explanation of this effect is
as follows. The complex network is prepared and perturbed
at time t ¼ 0. Experimental preparation generates a cas-
cade of events, whose rate RðtÞ is a decreasing function of
time, thereby making the response, which is proportional
to RðtÞ, fade away. Is this a general property, independent
of whether the stimulus is periodic [15–20]? If this was a
general result, it would be difficult, if not impossible, to
explain the communication properties revealed by the re-
cent neurophysiological literature.
The purpose of this Letter is to prove that the death of

LRT actually rests on an extension of Kubo LRT to the
nonstationary condition (NSLRT) and that consequently a
nonergodic system, insensitive to perturbations with a fixed
time scale, does respond to perturbations sharing the same
nonergodic behavior. We shall argue that this important
phenomenon explains why 1=f noise is an efficient stimu-
lus for complex systems.
The NSLRT rests on the general LRT form

�ðtÞ ¼ h�SðtÞi ¼ "
Z t

0
�ðt; t0Þ�Pðt0Þdt0; (1)

where the subscripts S and P denote the ‘‘system’’ network
and the perturbing network, respectively. Note that h�SðtÞi
is the Gibbs ensemble average over infinitely many re-
sponses �SðtÞ to �PðtÞ and � � 1 is the stimulus strength.
We make the simplifying but realistic assumption that the
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preparation of S [12] does not set a bias on S, so that
h�Sð0Þi ¼ 0. The function �ðt; sÞ is given by [21,22]

�ðt; t0Þ ¼ d�Sðt; t0Þ
dt0

¼ RSðt0Þ�Sðt� t0Þ: (2)

The function �Sðt; t0Þ is the autocorrelation function of
�SðtÞ, namely, the survival probability of age t0, and RSðtÞ
for the case of discrete signals considered here is the rate at
which events are produced by the network S prepared at
t ¼ 0, i.e., the bits per second encoded in �SðtÞ. This rate is
time-independent only in the Poisson case. In the non-
Poisson case, this rate depends on time, thereby making
�Sðt; t0Þ nonstationary. The brand new survival probability
�SðtÞ ¼ �Sðt; t0 ¼ 0Þ is given by [16,21,22]

�SðtÞ ¼ ð1þ t=TSÞ1��S; (3)

from which the corresponding waiting-times probability
density c SðtÞ ¼ �d�SðtÞ=dt is derived. In the range of
parameters 1<�S < 3 considered here, it is known [23]
that

RSðtÞ � � sin��S

TS

ðTS=tÞ2��S for 1<�S < 2; (4)

RSðtÞ � 1

�S
½1þ ðTS=tÞ�S�2� for 2<�S < 3; (5)

with �S ¼ TS=ð�S � 2Þ the mean value of c SðtÞ.
When �S < 2, the experimental preparation of S indu-

ces a sequence of events, whose rate RS tends to vanish for
t ! 1, yielding a perennial out-of-equilibrium condition
and an explanation of the death of linear response [15–20]
as well. In fact, the response to a harmonic perturbation of
frequency f is proportional to 1=ðftÞ2��S [16]. In the case
2<�S < 3, on the contrary, the preparation-induced cas-
cade of events, in the limit t ! 1, becomes stationary and
virtually identical to that of a Poisson process. The theo-
retical analysis of this Letter is done in the asymptotic time
regime. Thus, we refer to the case 2<�< 3 as stationary,
in contrast to the nonstationary case � � 2 of perennial
transition. Before proceeding with the use of the NSLRTof
Eq. (1), we point out some important properties of both
signals �SðtÞ and �PðtÞ. If necessary, the signal �PðtÞ must
share the same properties as �SðtÞ, and for simplicity they
are both assumed to be dichotomous signals with random
renewal fluctuations between the values þ1 and �1. The
survival probability in each state is given by Eq. (3) with
parameters carrying the appropriate index: TS,�S for S and
TP, �P for P. The spectrum of this type of fluctuating
signal, as calculated in Refs. [24,25], is

SðfÞ / L��2f��3; (6)

valid for �< 2, remarkably, even though a stationary
autocorrelation function cannot be defined in this case. In
the case �> 2, SðfÞ ¼ A=f3��, with A independent of L,
the length of the sequence under study. Similarly to the rate
of events RSðtÞ, the spectral intensity per unit time tends to
vanish for�< 2 as an effect of increasing L. The ideal 1=f

noise condition, corresponding to� ¼ 2, generates instead
a logarithmic decrease of the spectral intensity with time
and consequently a spectrum virtually independent of L.
Averaging Eq. (1) over the external fluctuations �PðtÞ,

we obtain

h�ðtÞi ¼ hh�SðtÞii ¼ "
Z t

0
�ðt; t0Þh�Pðt0Þidt0:

As previously mentioned, the NSLRT of Eq. (1) rests on
the preparation of S at time t ¼ 0. We apply the same
preparation condition to P, thereby generating the cascades
RSðtÞ and RPðtÞ described by Eqs. (4) and (5), with the
appropriate indexing. Under this condition the relaxation
of h�PðtÞi becomes identical to the survival probability
�PðtÞ. Assuming the condition of Eq. (2), we have the
following expression for the average response:

h�ðtÞi ¼ "
Z t

0
RSðt0Þ�Sðt� t0Þ�Pðt0Þdt0: (7)

The preparation of both S and P makes the average over
many realizations of the response �ðtÞ to a given stimulus
P vanish for t ! 1. While we refer the readers to Ref. [26]
for details, hereby we prove that the intensity of the re-
sponse of S with�S < 2 to �PðtÞ does not decay if�P < 2.
This is what we mean by going beyond the LRT death,
claimed by many researchers [15,17–20]. To prove this
important fact, we study the cross-correlation (or input-
output correlation) function between the system S and the
stimulus P: CðtÞ � hh�SðtÞ�PðtÞii and the mutual informa-
tion, which are used as indicators of aperiodic stochastic
resonance [27]. Multiplying both sides of Eq. (1) by �PðtÞ
and averaging over the fluctuations of the perturbation P,
we obtain

�ðtÞ � CðtÞ=" ¼
Z t

0
dt0RSðt0Þ�Sðt� t0Þ�Pðt; t0Þ: (8)

Note that both Eqs. (7) and (8) depend on the survival
probability of network P, but the former depends on the
single time t0, whereas the latter depends on both t0 and t
and is nonstationary. We limit ourselves to report the
results for the asymptotic value �1 of �ðtÞ. When �SðtÞ
and �PðtÞ are not stationary, i.e., when 1<�S � 2 and
1<�P � 2, Eq. (8), in the limit t ! 1, gives

�1¼ �ð�S;�PÞ
��ð�Sþ�P�2Þ

� 3F2½f�P�1;�P�1;�Pþ�S�2g;f�P;�Pg;1�
�ð2��PÞ�ð�PÞ2�ð�S�1Þ ;

(9)

where 3F2 is the generalized hypergeometric function. In

the case 2<�P < 3, �1 is simply zero.
In the case 2<�S < 3, inserting into Eq. (8) expression

(5) for RSðtÞ leads to

�ðtÞ ’
Z t

0
dt0

1

�S
�Sðt� t0Þ�Pðt; t0Þ: (10)

PRL 105, 040601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
23 JULY 2010

040601-2



Equation (10) is exact for t � �S, and for 1<�P � 2 it
leads [26] to �1 ¼ 1, while for 2<�P < 3 it yields

�1 ¼ ð�S � 2Þ=ð�P þ�S � 4Þ: (11)

Results are summarized in Table I. For illustrative pur-
poses, we supplement Table I with Fig. 1, showing the 3D
plot of the cross-correlation function �1 in the same
parameter range: Square II and square III correspond to
the condition of minimal and maximal correlation, respec-
tively. Intuitively, it is so because of the difference of time
scales between S and P in such regions. In III, fluctuations
�SðtÞ and �PðtÞ have a finite and an infinite time scale,
respectively, thereby allowing �SðtÞ to adapt to the
stimulus-induced bias so as to yield maximal correlation.
In II, the role of the time scales is inverted, and the bias
induced by P on the longer (diverging) time scale of the
process �SðtÞ is asymptotically averaged out due to the
many intervening switching events of �PðtÞ, producing no
correlation. The vertex �S ¼ �P ¼ 2, representing a
1=f-noise system under the stimulus of a 1=f-noise per-
turbation, marks the abrupt transition from vanishing
(square II) to maximal correlation (III).

Now let us proceed to the demonstration that the inten-
sity of the response �ðtÞ to a single realization of the
stimulus does not decay, if �1 � 0. We note that by
definition the nonvanishing �1 yields

CðtÞ � X
i;j

ijp½�SðtÞ ¼ ij�PðtÞ ¼ j�p½�PðtÞ ¼ j� ! "�1;

where the conditional probability for the occurrence of a
value of �S ¼ i ¼ 	1, given the occurrence of a value of
�P ¼ j ¼ 	1, has been introduced. We note that for t !
1, on a time scale such that h�PðtÞi 
 h�Pð0Þit1��P is a
second-order quantity Oð"2Þ, we have p½�PðtÞ ¼ j� ¼
1=2þOð"2Þ and �ðtÞ ¼ �1 þOð"2Þ. Thus, due to the
symmetry of the considered dichotomous processes:

ptð�i
Sj�j

PÞ � p½�SðtÞ ¼ ij�PðtÞ ¼ j� ! 1

2
þ ij"

�1
2

: (12)

In the same long-time scale, Eq. (12) yields

h�ðtÞi	 � X
i

ptð�i
Sj�	1

P Þi ’ 	"�1; (13)

where the subscript 	 indicates the value of �P at time t.
Summing Eq. (13) over the two values of �P gives a total
average null response, as expected. But if the magnitude
j�ðtÞj of the response to a single instance of the input �PðtÞ
is considered instead, its total average is

hj�ðtÞji ¼ 1

2

X
	
hj�ðtÞji	 *

1

2

X
	
jh�ðtÞi	j ’ "�1; (14)

where an equality holds if terms of order Oð"2Þ are ne-
glected. Thus, when �1 > 0, the response �ðtÞ to a single
instance of the input �PðtÞ does not die out and remains
proportional to the stimulus, no matter how large t be-
comes. Square III is the plateau region of maximal cross
correlation and response, together with the degenerate
limit case �P ¼ 1 of square I. The term death of linear
response is appropriate for the vanishing correlation of
square II. The total average response h�ðtÞi always tends
to vanish for t ! 1 for reasons that do not imply a lack of
response except in the case of square II. The everlasting
response to a single complex stimulus is confirmed nu-
merically by Fig. 2, whose inset shows the correlation
emerging from averaging over many realizations of the
stimulus.

TABLE I. Summary of the asymptotic values of the cross-
correlation function �ðtÞ.
�S# �P! 1<�P � 2 2<�P < 3

1<�S � 2 �1 ¼ �ð�S;�PÞa I �1 ¼ 0 II

2<�S < 3 �1 ¼ 1 III �1 ¼ �S�2
�Sþ�P�4 IV

aSee Eq. (9).
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FIG. 1 (color online). The asymptotic limit of �ðtÞ is dis-
played for �S;�P 2�1; 3½. The vertex �S ¼ �P ¼ 2 marks
the transition to a condition of maximal input-output cross
correlation.
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FIG. 2 (color online). Response �ðtÞ (black line) to input �PðtÞ
(green square line) rescaled by ", for �S ¼ 1:9, TS ¼ 10, �P ¼
1:55, and TP ¼ 9. Inset: Average of �ðtÞ�PðtÞ over N ¼ 104

inputs, converging to �1 ¼ 0:85 as predicted by Eq. (9).
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The reason for the striking difference between the re-
sponse to a harmonic perturbation and the response to a
nonergodic stimulus is intimately related to the emergence
of 1=f noise and to its spectrum described by Eq. (6),
which assigns the weight SðfÞ=L ¼ 1=ðfLÞ3��P to the
spectral component of frequency f of a nonergodic stimu-
lus. As a consequence, the stimulus generates, in time,
smaller and smaller frequencies f, so as to keep
1=ðfLÞ2��S (i.e., the response intensity to frequency f
[16]) finite, thereby yielding Eq. (14). The death of linear
response [15,17–20] is caused by the fact that stimuli with
fixed frequencies cannot cope with the decreasing fre-
quency of the cascade of events of Eq. (4).

We have afforded a compelling proof that the intensity
of the single realizations of �ðtÞ, with �S < 2, does not
decay if the perturbation �PðtÞ falls in the same complexity
basin (�P < 2). We refer to this phenomenon more appro-
priately as complexity management since, differently from
the complexity matching conjecture advanced in Ref. [23],
it does not imply maximum response when �S ¼ �P.

Now we argue that 1=f stimuli generate the maximum
information transport by looking at the mutual information

IðtÞ ¼ X
i;j

ptð�j
PÞptð�i

Sj�j
PÞ log½ptð�i

Sj�j
PÞ=ptð�i

SÞ�: (15)

By using Eq. (12), in fact, it follows that Iðt ! 1Þ ’ "2�21
and the information transmission rate is obtained by multi-
plying IðtÞ by the input rate [28], given by RPðtÞ. If�P > 2,
Fig. 1 shows that �1 < 1. Although square III in Fig. 1
indicates that all stimuli with �P � 2 induce maximal
correlation, �P < 2 corresponds to a stimulus with decay-
ing events rate (input bits/sec) RPðtÞ. So even if a response
is produced in this regime, the rate of information transfer
vanishes in time. Only at the crucial condition �P ¼ 2, of
ideal 1=f noise, does this algebraic decay become loga-
rithmic, and, consequently, a steady and maximal informa-
tion transmission rate is achieved.

Experimental verification either on liquid crystals [12]
or on ion channels, whose open/close dynamics has been
reported to have 1=f properties [29], is desirable. In the
latter case, by using a patch-clamp technique, a 1=f stimu-
lus can be used as a stimulus and the correlation with the
current output analyzed.

In conclusion, the NSLRT proposed in this Letter [30]
explains not only the mystery of the efficient transport of
information emerging from the latest theoretical and ex-
perimental results in neurophysiology [2,5], but many
other forms of 1=f noise propagations, e.g., why ecological
time series tend to exhibit 1=f noise if the underlying
abiotic perturbations are 1=f noise [31].
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