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Betweenness centrality lies at the core of both transport and structural vulnerability properties of

complex networks; however, it is computationally costly, and its measurement for networks with millions

of nodes is nearly impossible. By introducing a multiscale decomposition of shortest paths, we show that

the contributions to betweenness coming from geodesics not longer than L obey a characteristic scaling

versus L, which can be used to predict the distribution of the full centralities. The method is also

illustrated on a real-world social network of 5:5� 106 nodes and 2:7� 107 links.
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Many complex networks are organically evolving with-
out any centralized control or design, and for this reason
intense research has been devoted to understand their
performance properties and more importantly, their vulner-
abilities and failure modes. In these studies, a fundamental
role is played by centrality measures (originally introduced
in social sciences [1–3]), and, in particular, betweenness
centrality [4–7]. Betweenness centrality (BC) of a node
(edge) is defined as the fraction of all geodesics (shortest
paths) passing through that node (edge). Since transport
tends to minimize the cost or time of the route from source
to destination, geodesics, and hence centrality measures
and their distributions will strongly determine overall
transport performance. Interestingly, geodesics are not
only important for network flows but also for structural
connectivity: removing nodes (edges) with high centrality
one obtains a rapid increase in diameter, and eventually the
structural breakup of the graph. Analysis of traffic, or
information flow [5,7–11], network vulnerability in face
of attacks [12], cascading failures [13] or epidemics [14],
all involve betweenness calculations.

Unfortunately, computation of betweenness is very
costly [10,11,15–18] and for large networks with millions
to billions of nodes it is nearly impossible; hence, approxi-
mation methods are needed. Existing approximations [19],
however, are sampling based, and ill controlled.

Here we show that when geodesics are restricted to a
maximum length L, the corresponding range-limited L
betweenness (introduced by Borgatti and Everett as
bounded-distance betweenness [3]) for large graphs as-
sumes a characteristic scaling form as function of L. This
scaling can then be used to predict the betweenness distri-
bution in the (usually unattainable) diameter limit, and
with good approximation, to predict the ranking of nodes
or edges by betweenness. Additionally, the range-limited
method generates l-betweenness values for all nodes and
edges and for all 1 � l � L, providing systematic infor-
mation on geodesics on all length scales. This is of interest
in its own right, when the transported entity has a small
transmission probability (rumors, viruses) and thus high

attrition rate, not exploring longer geodesics. As we show,
the L-betweenness scaling is already achieved for rela-
tively small L values and there is increasingly less new
information obtained on BC distribution and ranking when
going from L to Lþ 1. The computational overhead,
however, involved in the L � Lþ 1 step is usually im-
mense. The range-limited centrality algorithm presented
here, even in the diameter limit (L ¼ D), has no larger
complexity than the currently known fastest algorithms by
Brandes [15] and Newman [16], that isOðNMÞ, where N is
the number of nodes and M is the number of (directed)
edges, and it is fully parallelizable. For L<D our algo-
rithm runs sublinearly in OðNMÞ, making it possible to
study networks with millions of nodes. As an illustration,
we analyzed a social network (SocNet) inferred from
mobile phone trace logs [20] having a giant cluster with
N ¼ 5 568 785 and M ¼ 26 822 764. For this network we
calculated all L-betweenness centralities (L-BCs) for all
nodes and edges up to L ¼ 5 in 6 days, on 10 processors.
With increasing L the ranking of the highest BC nodes
freezes and one can predict the top nodes early. The
number of geodesics running through these nodes, how-
ever, explodes with L. For example, while the node with
highest centrality for L ¼ 4 has 40 084 702 geodesics, for
L ¼ 5 it has 500 903 498 of them passing through.
Calculating betweenness centrality of a node or edge in a

directed graph GðV;EÞ requires us to count the number of
all-pair shortest directed paths incident on it. Here we
include end points; however, the algorithm can easily be
changed to exclude them, or produce other variants. The
stress centrality (SC) SðiÞ of a node i 2 V is simply the
sum of the total number �mnðiÞ of shortest directed paths
from node m to n going through i, SðiÞ ¼ P

m;n2V�mnðiÞ.
Betweenness centrality (BC) [4,6] normalizes the number
of paths through a node by the total number of paths (�mn)
for a given source-destination pair (m, n): BðiÞ ¼P

m;n2V�mnðiÞ=�mn. Similar quantities can be defined for

an edge ðj; kÞ 2 E: Sðj; kÞ ¼ P
m;n2V�mnðj; kÞ and

Bðj; kÞ ¼ P
m;n2V�mnðj; kÞ=�mn.
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In order to define range-limited quantities, let slðjÞ and
blðjÞ denote the stress and betweenness centralities of a
node j for all-pair shortest directed paths of fixed length l.
Then SLðjÞ ¼ P

L
l¼1 slðjÞ and BLðjÞ ¼ P

L
l¼1 blðjÞ represent

centralities from paths not longer than L. Similar measures
for an edge are defined in the same way. Just as virtually all
centrality algorithms, our method calculates these quanti-
ties for a node j for shortest directed paths all emanating
from a ‘‘root’’ node i, then it sums the obtained values for
all i 2 V to get the final centralities for j (similarly for
edges). While the basic concept of our algorithm is similar
to Brandes’ [15] and Newman’s [16], we derive recursions
that simultaneously compute both SC and BC for all nodes
and edges and for all values l ¼ 1; . . . ; L. The algorithm’s
output thus generates detailed and systematic information
about shortest paths in a graph on all length scales, provid-
ing a tool for multiscale network analysis.

The algorithm starts from a given root i and builds the
L-range subgraph CL containing all nodes which can be
reached in at most L steps from i. Only links which are part
of the shortest paths starting from the root are included in
CL. We decompose CL into shells GlðiÞ containing all the
nodes at shortest path distance l from the root, and all
incoming edges from shell l� 1, Fig. 1(a). The root itself
is considered to be shell 0 [G0ðiÞ].

Let srl ðijjÞ ¼
P

n2Gl
�inðjÞ denote the number of shortest

directed paths of length l from the root through node j in
the rth shell j 2 GrðiÞ, and let srl ðijj; kÞ ¼

P
n2Gl

�inðj; kÞ
describe the same quantity for an edge (j, k) in the rth

shell, ðj; kÞ 2 GrðiÞ. We define similar quantities for be-
tweenness, as brl ðijjÞ ¼

P
n2Gl

�inðjÞ=�in, and brl ðijj; kÞ ¼P
n2Gl

�inðj; kÞ=�in. Then slðjÞ ¼ P
i2Vs

r
l ðijjÞ and blðjÞ ¼P

i2Vb
r
l ðijjÞ, with similar equations for edges. In these

sums r is not an independent variable. Given i and j, it is
the radius of shellGrðiÞ centered on i and containing j. One
can show that the following recursions hold, (see also
Fig. 1):

sllðijjÞ ¼
X
k

sl�1
l�1ðijkÞ; bllðijjÞ ¼ 1; (1)

srþ1
l ðijj; kÞ ¼ srþ1

l ðijkÞsrrðijjÞ=srþ1
rþ1ðijkÞ; (2)

brþ1
l ðijj; kÞ ¼ brþ1

l ðijkÞsrrðijjÞ=srþ1
rþ1ðijkÞ; (3)

srl ðijjÞ ¼
X
k

srþ1
l ðijj; kÞ; brl ðijjÞ ¼

X
k

brþ1
l ðijj; kÞ: (4)

The steps below are repeated for l ¼ 1; . . . ; L: (1) Build
GlðiÞ, using a breadth-first search; (2) calculate the
l-centrality measures (sllðijjÞ, bllðijjÞ) of all nodes in

GlðiÞ; (3) moving backwards, through r ¼ l� 1; . . . ; 1; 0,
calculate the fixed-l centralities of links in Grþ1ðiÞ and of
nodes in GrðiÞ, using recursions (1)–(4). Finally, return to
step (1) until the last shell GLðiÞ is reached. In the end, we
obtained the fixed-l betweenness values of all nodes and
edges in CL. This concludes the basic algorithm, which can
be modified to compute different variants of BC and SC,
such as excluding end points. Similar recursions can also
be derived for load and closeness centrality [5,17].
The L-betweenness values on large networks obey a

scaling behavior as function of L. On Fig. 2 we plot the
distribution of node betweenness values measured on the
Erdős-Rényi random graph (ER) [21], the Barabási-Albert
scale-free model (BA) [22], the random geometric graph
(RG) [23], and the large social network (SocNet) [20].
Since in large networks BL grows quickly, it is better to
work with the distribution QL of the lnBL values than with
the distribution PL of BL values. However, note that
QLðlnBÞ ¼ BPLðBÞ. As shown on the insets of Fig. 2, the
distributions QLðlnBÞ for different L can be rescaled onto
each other by plotting Q ¼ �LQL vs u ¼ ½lnðBÞ �
�L�=�L, where �L and �L are the mean and the standard
deviation for lnBL. These networks were chosen to repre-
sent very different graph classes: the ER, BA, and SocNet
have small diameters, while the RG has no shortcuts. The
RG is spatially embedded (d ¼ 2) unlike ER and BA; the
SocNet, however, is influenced by the spatial embedding of
people’s motility [20]. While BA has a power-law degree
distribution PðkÞ � k�3, both ER and RG have a
Poissonian for PðkÞ, and the SocNet’s PðkÞ resembles a
log-normal [24,25]. Both RG and SocNet have high clus-
tering, unlike the others.
Next we show that the scaling behavior observed for

range-limited centralities in large graphs is a consequence
of the scaling for shell sizes shown to exist, e.g., in random
graphs with arbitrary degree distributions [26,27]. Here we
present arguments for undirected, uncorrelated graphs and
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FIG. 1 (color online). (a) Shells of the C3 subgraph of node i
(black) are colored red (medium-light gray), blue (dark gray),
green (medium gray). Light gray elements are not part of the
subgraph. (b) Eq. (1) calculates SC of a node in Gl [blue (dark
gray)] by summing the SC of all its predecessors from Gl�1ðiÞ
[red (medium-light gray)], e.g., sllðijjÞ ¼ sl�1

l�1ðijkÞ þ sl�1
l�1ðijmÞ.

(c) Eqs. (2) and (3) are based on the observations: �inðj; kÞ ¼
srrðijjÞ�kn and �inðkÞ ¼ srþ1

rþ1ðijkÞ�kn. Equation (4) calculates the

fixed-l centralities for a node [red (medium-light gray)] in GrðiÞ
by summing the corresponding centralities of its outgoing links
[blue (dark gray)] in Grþ1ðiÞ, e.g., srl ðijjÞ ¼ srþ1

l ðijj; kÞ þ
srþ1
l ðijj; mÞ.
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only deal with BC, extensions to other centralities men-
tioned above being straightforward. Let us define h� � �i as
an average over all root nodes i in the graph. If zlðiÞ denotes
the number of nodes on shell GlðiÞ, then we model the
growth of shell sizes by a branching-like process zlþ1ðiÞ ¼
zlðiÞ�l½1þ �lðiÞ�, where �l ¼ hzlþ1i=hzli is the branching
factor at an lth shell, and �lðiÞ is a per node, shell occu-
pancy noise term, j�lj � 1, considered to obey h�lðiÞi ¼ 0
and h�lðiÞ�mðiÞi ¼ 2Al�l;m, with Al decreasing with l, sup-
ported by numerical evidence. For undirected paths we can
write blþ1ðjÞ ¼ ð1=2ÞPi2Vblþ1ðijjÞ ¼ zlþ1ðjÞ þ ð1=2Þ�P

l
m¼1

P
i2GmðjÞ b

m
lþ1ðijjÞ � zlþ1ðjÞ þ ð1=2Þulþ1ðjÞ, where

we used the fact that in undirected graphs i 2 GmðjÞ ,
j 2 GmðiÞ. Note that the number of terms in the inner sumP

i2GmðjÞb
m
lþ1ðijjÞ is zmðjÞ, which is rapidly increasing with

m, and thus ulþ1ðjÞ is expected to have a weak dependence
on j. Accordingly, we may approximate ulþ1ðjÞ ’P

l
m¼1

P
i2GmðjÞ v

m
lþ1ðiÞ, where vm

lþ1ðiÞ is an average be-

tweenness computed on a shell of radius m, centered on
node i: vm

lþ1ðiÞ ¼ ½Pk2GmðiÞb
m
lþ1ðijkÞ�=zmðiÞ. Based on the

observation that
P

k2GmðiÞb
m
l ðijkÞ ¼ zlðiÞ, we can write

that vm
lþ1ðiÞ ’ zlþ1ðiÞ=zmðiÞ. Using the recursion defined

above for zlþ1ðiÞ as a branching process, and neglecting
the small noise term, we obtain that ulþ1ðjÞ ’
�l

P
l
m¼1

P
i2GmðjÞ zlðiÞ=zmðiÞ. This allows us to write a

recursion for blþ1ðjÞ as blþ1ðjÞ ’ �l½blðjÞ þ zlðjÞ=2þ
zlðjÞ�lðjÞ�, which can be iterated down to l ¼ 1, where
b1ðjÞ ¼ z1ðjÞ ¼ kj is the degree of j:

blðjÞ ’ �lkje
�lðjÞ; (5)

with �l ¼ lþ1
2

Q
l�1
m¼1 �m ¼ lþ1

2 hzli=hki, and �lðjÞ ¼P
l�1
n¼1

lþ1�n
lþ1 �nðjÞ. Equation (5) allows us to relate the sta-

tistics of fixed-l betweenness to the statistics of shell oc-
cupancies. Since the noise term (calculated from per node
occupancy deviations on a shell) is independent on root
degree, the distribution of fixed-l betweenness can be ex-
pressed as:

�lðbÞ ¼ 1

b

Z N�1

1
dkPðkÞ�lðlnb� ln�l � lnkÞ; (6)

where PðkÞ is the degree distribution and �lð�Þ is the
distribution for the noise �lðjÞ, peaked at � ¼ 0, with fast
decaying tails and�1ðxÞ ¼ �ðxÞ. From (6) follows that the
natural scaling variable for betweenness distribution is u ¼
lnb� ln�l. An extra l dependence comes from the noise
through the width �l of�l (for l > 1), which can be easily
accounted for by the rescaling u � u=�l, �l � �l�l,
collapsing the distributions for different l values onto the
same functional form. As �l is sharply peaked around 0,
the most significant contribution to the integral (6) for a
given b comes from degrees k ’ b=�l. Since k 	 1, we
have a rapid decay of �lðbÞ in the range b < �l, a maxi-
mum at �b ¼ �l

�k where �k is the degree at which PðkÞ is
maximum, and a sharp decay for b > ðN � 1Þ�l. In many
networks, shell size grows exponentially (ER, AB, and also
in the SocNet), that is �l ’ � ¼ hz2i=hki, until l reaches
the average shortest path distance. This implies that �l �
�l and bl grows exponentially with l [Fig. 3(a)]. In this
case, since bl is rapidly increasing with l, the cumulative
BLðjÞ ¼

P
lblðjÞ will be dominated by the largest l values

FIG. 2 (color online). Distribution QL of L betweeness for
different values of L. (a) ER, N ¼ 5� 104, hki ¼ 4, diameter
D ¼ 16, (b) BA, N ¼ 5� 104, m ¼ 3, D ¼ 8, (c) SocNet, N ¼
5 568 785, M ¼ 26 822 764 and the distributions are fitted by a
log-normal (black dashed curves), (d) RG, N ¼ 104, hki ¼ 15,
D ¼ 79. The insets show the rescaled distributions, see text.

FIG. 3 (color online). (a) bl (circles) and Bl (stars) vs l for
some node j in SocNet [red (medium gray)] and ER [blue (dark
gray)]. (b) same as (a) for RG for two arbitrary nodes i and j.
BLþ1 vs BL for (c) SocNet and (d) RG. Each dot corresponds to a
node. Ranking by BC vs L for the top 10 nodes in (e) SocNet and
(f) RG (from Fig. 4).
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and thus, BL obeys a similar scaling supporting the obser-
vations in Fig. 2. For pure scale-free networks PðkÞ ¼
ck�	, and �lðbÞ / ðb=�lÞ1�	 for l > 1. In networks where
the shell size grows as a power law (spatially embedded
networks without shortcuts), such as RG, roadways, etc.,
�l � ld, where d is the embedding dimension, blðjÞ � ld

and BL � ldþ1 [Fig. 3(b)].
As the contributions of the noise terms �lðjÞ to �lðjÞ

coming from larger shells are decreasing with increasing l
(their weight decreases as ðlþ 1Þ�1 in addition to the
decreasing of their magnitude j�lðjÞj) the �lðjÞ quantities
rapidly converge to a constant. From (5), for a pair of nodes
i, j: ln½blðiÞ=blðjÞ� ¼ lnðki=kjÞ þ �lðiÞ � �lðjÞ showing

that their relative ranking by l betweenness freezes with
increasing l. Consequently, BL and BLþ1 become more
correlated with increasing L [Figs. 3(c) and 3(d)] and the
ranking of the nodes by their BC also freezes [Figs. 3(e)
and 3(f)], allowing early prediction of top betweenness
nodes. Spatially embedded networks (RG) without short-
cuts represent the worst case, but relative to their diameter
the convergence of ranking is still fast [Fig. 3(f)]. An
important application of top betweenness predictability is
determining the ‘‘vulnerability backbone’’ (VB) of a graph
(crucial for network defense purposes [12,14]) which is
made by the smallest fraction of highest betweenness
nodes forming a percolating cluster through the network.
Figure 4 for RG (worst case) shows that the VB (red
subgraph) can accurately be predicted already from L ¼
45 betweenness values [Fig. 4(c)] compared to the diame-
ter (D ¼ 195) based full betweennesses [Fig. 4(d)].

Finally, we note that the scaling behavior can be used to
provide a lower bound L
 of the diameter, from observing

that finite size effects appear when the sum of average shell

sizes hits N:
P

L

l¼1hzli ¼

P
L

l¼1

2
lþ1�lhki ’ N. This allows

us to find L
 from the scaling behavior of �l. In particular,
for the SocNet L
 ¼ 10.
In summary, we have shown that the contributions to

centrality measures coming from different length scales of
the geodesics exhibit characteristic scaling in large graphs.
Exploiting this universal property with the methods pre-
sented here makes it possible to predict betweenness val-
ues, distributions, and ranking with relatively low
computational costs.
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