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We introduce a new global Lagrangian descriptor that is applied to flows with general time dependence

(altimetric data sets). It succeeds in detecting simultaneously, with great accuracy, invariant manifolds,

hyperbolic and nonhyperbolic flow regions.
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Introduction.—Finding order in the apparent disorder of
ocean motion is still an open problem, as even flows that in
their Eulerian description are smooth present messy float
trajectories [1]. Typical ocean structures are eddies and
currents. Major currents, such as the Gulf stream or the
Kuroshio, impact Earth’s climate because of the heat they
transfer. Eddies or rings are certain robust, long-lived
structures that may travel hundreds to thousand of kilo-
meters, and persist for periods lasting from months to
years. Understanding transport across these large scale
structures is a challenging task, but one increasingly ame-
nable to treatment since data are now becoming available
[1]. Lagrangian tools provide a characterization of fluid
flows. Underlying their description is Poincaré’s idea of
seeking geometrical structures on the ocean surface (the
phase portrait) that can be used to organize particles sche-
matically by regions corresponding to qualitatively differ-
ent types of trajectories. For stationary flows the fixed
points are key for describing the solutions geometrically.
Fixed points may be classified as hyperbolic or nonhyper-
bolic depending on their stability properties. Hyperbolic
fixed points are responsible for particle dispersion and
nonhyperbolic fixed points are related to particle confine-
ment. The interplay between dispersion and confinement is
an essential element of fluid transport processes. Stable and
unstable manifolds of hyperbolic fixed points divide the
phase portraits in regions with qualitatively different types
of trajectories since they are barriers to transport. This
Letter describes a new Lagrangian descriptor that for flows
with a general time dependence realizes Poincaré’s idea of
dividing a phase portrait in different regions that corre-
spond to trajectories with qualitatively different behaviors.
Our new instrument is based on a function which has been
introduced in [2] as a building block of a new definition of
a ‘‘distinguished trajectory’’ (DT), which is a generaliza-
tion of the concept of fixed point for aperiodically time
dependent flows. Our function reflects, at the level of the
phase portrait, relevant dynamical features of arbitrary
time dependent dynamical systems. Some of these features
have not previously been detectable; thus, when applied to
altimetric ocean data sets, M reveals the hidden geometry
of the ocean flow. The technique locates simultaneously
hyperbolic and nonhyperbolic flow regions. Since it reveals
singular features along the stable and unstable manifolds of

the ‘‘distinguished hyperbolic trajectories’’ (DHTs), it is
useful as well to detect these invariant curves, that near the
DHTs coincide with its stable and unstable directions.
The function M.—The function we propose as a global

Lagrangian descriptor (see [2]), considers the system:

_x ¼ vðx; tÞ;x 2 Rn; t 2 R; (1)

where vðx; tÞ isCr (r � 1) in x and continuous in t. Let xðtÞ
denote a trajectory and denote its components inRn by (x1,
x2; :::; xn). For all initial conditions x

� in an open set B 2
Rn, at a given time t�, we define the function
Mðx�; t�Þv;�: ðB; tÞ ! R for the system (1) as follows:

Mðx�; t�Þv;� ¼
Z t�þ�

t���

�Xn
i¼1

ðdxiðtÞ=dtÞ2
�
1=2

dt: (2)

In our observational oceanographic flow, particle advection
occurs mainly in 2D (see [3]), so n ¼ 2 in (1).M is then the
function that measures the Euclidean arc length of the
curve traced by a trajectory passing through x� at time t�
on the plane (x1, x2). The trajectory is integrated from t� �
� to t� þ �. The function M depends on � and also on the
vector field v. It is applicable to both time dependent and
stationary flows. In the latter case it provides a time inde-
pendent partition of the phase portrait. For instance, for the
unforced, undamped Duffing equation a contour plot of M
depicts the familiar stable and unstable manifolds of the
fixed point located at the origin. For time dependent flows
the phase space partition provided byM is time dependent.
The data set and the dynamical system.—The velocity

data used in this work are geostrophic surface currents
computed at CLS Int. Corp. in the framework of the
SURCOUF project [4]. The data span the whole Earth, at
a resolution of 1=3� at Equator, but we focus our results
over a region through which passes the Kuroshio current, in
selected days of May and June 2003. Details on the data
may be found in [5]. It is interpolated following methods
described in [6,7], that use bicubic interpolation in space
and Lagrange polynomials in time. Our coordinate system
(�, �) is related to the longitude and latitude (�, �) by
means of a transformation � ¼ �ð�Þ (see details in [5,6]).
These variables are convenient for they distribute the data
on a uniform grid. The equations of motion for (�, �) are

PRL 105, 038501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

0031-9007=10=105(3)=038501(4) 038501-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.038501


d�

dt
¼ uð�;�; tÞ

R cos ð�ð�ÞÞ ;
d�

dt
¼ vð�;�; tÞ

R cos ð�ð�ÞÞ ; (3)

where u and v represent the eastward and northward
components of the altimetry surface velocity field respec-
tively, and R is the radius of Earth. The factor 1= cos ð�ð�ÞÞ
in the � equation is an artifact of the coordinate trans-
formation. The function M in Eq. (2) is computed over the
dynamical system (3). Thus the length of the trajectory is
measured on the (�, �) plane. The system expressed in
Eq. (3) is not exact, as it is subject to errors coming from
the measured velocity fields, the sort of interpolation used,
etc. However, Eq. (3) is used for evaluating M, a function
that contains Lagrangian information. In the literature [8],
has been studied the robustness of the Lagrangian struc-
tures under errors induced in the vector field satisfying
certain conditions. We have assessed the reliability of M
by computing it with several interpolation schemes.

Results.—We demonstrate that the function defined in
Eq. (2) gives a global dynamic picture of oceanic flows
since it detects simultaneously invariant manifolds, hyper-
bolic, and nonhyperbolic flow regions. It synthesizes in-
formation more efficiently than, for instance, spaghetti
diagrams. These represent paths over time of messy tra-
jectories but they do not communicate information about
regions in which particle evolutions are qualitatively dif-
ferent, and one cannot get much intuition from them.
Figure 1 displays the function M for medium and large �
on selected days of May and June 2003 along the meander-
ing Kuroshio current. Maximum values of M are in red,

while dark blue indicates minima. The dependence ofM on
time is obvious for this highly aperiodic flow, since repre-
sentations for different days have different structures. In
the figure the organizing centers are visible at a glance.
These key points are the minima of M, and as discussed in
[2] they are related either to hyperbolic or nonhyperbolic
distinguished trajectories. Singular features of M forming
lines are easily discerned, both in Figs. 1 and 2. Figure 2(b)
shows their intersection at a hyperbolic minimum at lon-
gitude �157:1� and latitude �35:63�. The time evolution
of this point has been characterized in [5] as a DHT.
Singular lines are identified as manifolds since they are
advected by the flow and are asymptotically obtained from
small segments aligned with the stable and unstable sub-
spaces of the DHT. Figure 2(c) shows the overlapping ofM
with the stable and unstable manifolds computed with the
technique used in [3]. This confirms the coincidence of the
lines with the manifolds. Why should stable and unstable
manifolds be traced out by singular features of M? M
measures the lengths of curves traced by trajectories on
the phase space, so it is expected it will change abruptly at
the boundaries of regions comprising trajectories with
qualitatively different evolutions, since this is exactly
what the stable and unstable manifolds separate.
Convergence of the structure of M towards these singular
lines requires a large enough � value. For instance, for � ¼
2 the appearance of M in Fig. 2(a) is rather simple, almost
without structure and resembling that of Eulerian currents,
while sharp lines in Figs. 2(b) and 2(c) require the use of
� ¼ 15. The structure of M becomes more and more

FIG. 1 (color). Evaluation of the function M over the Kuroshio current between longitudes 148�E–168�E and latitudes
30�N–41:5�N; (a) and (b) on May 2, 2003; (c) and (d) on June 3, 2003. Panels (a) and (c) take � ¼ 15; panels (b) and (d) take � ¼ 30.
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refined for larger � values as confirmed by panels 1(b) and
1(d), obtained for � ¼ 30. This is justified because M
reflects the history of initial conditions on open sets, and
in highly chaotic systems this history is expected to be
more complex for longer time intervals. The evaluation of
M in large oceanic areas as shown in Fig. 1 reveals recog-
nizable phase portraits similar to those of the cat’s eyes of
the forced pendulum [in panel 1(a)] upper left), or the
forced Duffing equation [see panel 1(c) at the lower right].
The ocean surface resembles a patchwork of intercon-
nected dynamical systems from which the complexity of
possible particle routes is visible.

In Figs. 1 and 2, apart from the minima of the functionM
at the intersections of singular lines, related to the hyper-
bolic DT, there are apparent minima at the eddy centers. In
the work by Madrid and Mancho [2] these have been
related to ‘‘nonhyperbolic DT’’ (DET), which are eddylike
structures, of great interest to oceanographers. The
Lagrangian description of eddies, such as that shown in
Fig. 2 reveals the existence of an inner core, which is robust
and rather impermeable to stirring and an outer ring, where
the interchange with the media is understood in terms of
lobe dynamics (see [9]). We analyze how the function M
reflects to what extent the inner core of Fig. 2 is imperme-
able to mixing. Figure 3 displays contour plots ofM on t ¼
May 2, 2003 for several �. In Fig. 3(a) it is observed that for
� ¼ 15 days the interior of the eddy has a minimum which
is locally smooth. This means that in the range (t� �, tþ
�) trajectories in this neighborhood outline similar paths,
and for this reason the functionM does not change sharply
(i.e., does not have singular features). Smoothness of M
implies that for these initial conditions it does not perceive
nearby hyperbolic regions for (t� �, tþ �). Hyperbolic
trajectories are the ones responsible for dispersion and it is
just these trajectories that may induce sharp changes inM.

In Figs. 3(b) and 3(c) for larger � values (i.e., � ¼ 30 and
72, respectively) the interior of the eddy becomes less and
less smooth, for in the range (t� �, tþ �) trajectories
placed at the interior core either were dispersed in the
past or will disperse in the future. In fact, in Fig. 3(c),
the interior of the core is completely foliated by singular
features associated either to stable or unstable manifolds of
nearby hyperbolic trajectories. So, the value at which M
starts losing smoothness, e.g., 2� ¼ 60, is a good indicator
of the maximum time for confinement of particles in the
inner core. The minimum of M on the elliptic region does
not converge with �, and this is the condition required for
finding DT. Similarly to what is described in [2], DET have
not been found in highly aperiodic flows. Figure 3(c) dis-
plays in black line a piece of an unstable manifold which
overlaps on the contour plot of M. Again there is observed
a coincidence of the singular features of M with the mani-
fold. However, the foliated structure of M is much richer
than that provided by the manifold. The reason is that the
manifold has been computed from the one DHT recogniz-
able in Figs. 2(b) and 2(c), while M displays all stable and
unstable manifolds from all possible DHTs in the neigh-
borhood of the eddy, without need for identifying DHTs
a priori, as required by the manifold algorithm (see [3]).
ThusM provides a complete partition of the phase portrait,
while the direct computation of a manifold of a DHT does
not.
The Lagrangian method usingM has several advantages

over other methods based on finite time versions of
Lyapunov exponents (LE) such as FTLE or FSLE
[10,11]. LE techniques provide information on the linear-
ized flow along trajectories and their focus is on hyperbolic
regions. Ridges of FTLE and FSLE fields represent mani-
folds as reported for instance in [10,11]. Figure 4 confirms
this point. In it there is displayed the same eddy of Fig. 3,

FIG. 3. The function M evaluated over the inner core of an eddy on May 2, 2003. (a) � ¼ 15; (b) � ¼ 30; (c) � ¼ 72.

FIG. 2. The function M on May 2,
2003. (a) � ¼ 2; (b) � ¼ 15; (c) the
same as (b) with a piece of stable mani-
fold (black) and a piece of unstable
manifold (gray) of the DHT overlapping.
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but for � ¼ 50. The sharpest ridges of the FTLE field
represented in Figs. 4(b) and 4(c) are associated to the
stable (forward FTLE) and unstable (backward FTLE)
manifolds, respectively, in close correspondence to the
singular features of M displayed in Fig. 4(a). An obvious
difference between these two representations is that M
contains the information on both stable and unstable mani-
folds in the same picture, while FTLE splits it in two
diagrams. Regarding other features provided by FTLE
andM there is not strict agreement. In the regions centered
at longitude�156:1� and latitude�36:8� and at longitude
�156:3� and latitude�36:5�, the structure ofM is smooth
and eddylike, which as explained above, indicates that
particles in that area do not disperse. The same areas in
Fig. 4(b) display a striped pattern suggesting that particles
disperse in this time interval. Numerical integrations of
trajectories in these regions confirm that they stay close to
each other in the interval (t� �, tþ �). Nonsharp striped
structures in Fig. 4(b) raise then the questions of the kind of
information they provide and if there is an upper bound on
� for this vector field, beyond which the validity of some of
the structures provided by the FTLE cannot be confirmed.
In [12] it is reported that for particular transient flows
FTLE may develop ‘‘ghost’’ structures, although a detailed
discussion on this is beyond the scope of our Letter. A
further difference is that FTLE require certain assumptions
on the vector field (see [10]), while by construction the
function M is defined for a general time dependent vector
field and there is required only existence and uniqueness of
solutions for the system (3).

Computationally the evaluation of the function M is
cheaper than that of LE. In geophysical flows, both M
and LE require the performance of a large number of
integrations on a dynamical system such as (3), where
the vector fields are interpolated over a finite space-time
grid. Interpolations make computations expensive and sav-
ing these at each time step is a convenient feature.
Evaluation of the function M fits this criterion better than
LE as each point in the phase space requires of just one
integration forwards and backwards in time. LE tech-
niques, however, require more interpolations of the veloc-
ity field at each time step, either because they evaluate a

separation rate among several trajectories, or because they
compute the linearized flow around each trajectory.
The Lagrangian descriptor M locates special organizing

trajectories called DTas reported in [2]. However, although
there are references suggesting the ability of LE to achieve
this goal [13], there are no published studies where this is
discussed in detail.
In conclusion, this work demonstrates the efficiency of a

new Lagrangian descriptor M, for identifying the essential
dynamical features of general time dependent flows.M is a
promising tool for the estimation of transport in realistic
flows, as recent articles [5,14] have confirmed. Pursuing
further the discussion on how it contributes to transport
diagnosis, is beyond the scope of this Letter.
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