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An ultrathin polymer sheet floating on a fluid forms a periodic pattern of parallel wrinkles when

subjected to uniaxial compression. The wave number of the wrinkle pattern increases sharply near the

fluid meniscus where the translational symmetry of this one-dimensional corrugated profile is broken. We

show that the observed multiscale morphology is controlled by a new ‘‘softness’’ number that quantifies

the relative strength of capillary forces at the edge and the rigidity of the bulk pattern. We discover a new

elastic cascade by which the wrinkling pattern in the bulk is smoothly matched to the fine structure at the

edge by a discrete series of higher Fourier modes.
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The translational symmetry of any patterned state is
broken by a phase boundary, or a domain or sample wall.
In condensed matter systems, the mechanism by which the
pattern in the bulk matches up with the boundary has been
addressed in the context of Landau branching in type-I
superconductors [1] and the refinement of magnetic do-
mains near grain boundaries [2]. We discuss this general
problem in the context of a thin sheet that is decorated by a
pattern generated by an elastic instability, and present a
new mechanism by which an undulating shape in the bulk
phase smoothly accommodates the tendency of the bound-
ary to be flat, rather than by localized branching.

When a thin rectangular sheet floating on the surface of a
pool of liquid is compressed along two opposing sides, it
forms a pattern of parallel wrinkles, as shown in Fig. 1(a).
Unlike the Euler buckling of an unsupported sheet, where
the largest possible wavelength is selected, these wrinkles
form at a wavelength � � W, the width of the rectangle in
the direction of the compression. However, Fig. 1 shows
another striking phenomenon: the coarser pattern in the
bulk gives way to a finer structure of wrinkles near the
uncompressed edge. It is this cascade to ever-higher wave
numbers that we examine in this Letter.

We performed controlled experiments with polystyrene
(PS) sheets with typical lateral dimensions of W � L ¼
3� 2 cm and thickness t between 50 and 400 nm. The
sheets are prepared from PS solutions (atactic, number-
average mol. wt. Mn ¼ 121 K, weight-average mol. wt.
Mw ¼ 1:05Mn, radius of gyration Rg � 10 nm) in toluene,

spin coated on to glass substrates. The thickness t was
measured by x-ray reflectivity (Panalytical X-Pert diffrac-
tometer) with a precision of �0:5 nm. A rectangle was
scribed onto the film with a sharp edge [3]. When the
substrate was dipped into a petri dish of distilled, deionized
water, the rectangle detached from the substrate. Since PS
is hydrophobic, the film remained floating on the water,
stretched out by the liquid-vapor surface tension, �.

Two principles determine the bulk pattern: first, a thin
sheet can be approximated as inextensible, so that the

length of a line in the compression direction is preserved.
Consequently, the wavelength and amplitude of the wrin-
kles are proportional. Second, the bending energy of the
sheet favors long wavelengths (large amplitudes) whereas
the gravitational energy of the liquid subphase favors small
amplitudes (small wavelengths). Thus, the wavelength is
selected by a compromise [4] between the bending and
gravitational energies.
As shown in Fig. 1, when the sheet is compressed by a

distance � (such that ~� � �=W � 1), parallel wrinkles
develop in the bulk. This one-dimensional pattern of wrin-
kles, characterized by a height field �ðyÞ has for small
amplitudes an energy per unit surface area
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FIG. 1 (color online). (a) Image of a wrinkled PS sheet floating
on the surface of water, compressed between two razor blades.
(b) Sketch of geometry. (c) Bulk wavelength of wrinkles, � ¼
2�=qo as a function of film thickness, t. The solid line is a fit to
t3=4, in agreement with the prediction of qo ¼ ð�g=BÞ1=4.
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The first two terms represent bending energy of the sheet
and gravitational energy of the fluid, respectively. The third
term enforces the constraint of inextensibility for small
amplitudes, with the Lagrange multiplier� being the stress
�yy applied at the compressed edges. � is the density of the

fluid, and the bending modulus is B ¼ Et3=½12ð1��2Þ�
[5], where E is Young’s modulus and� is the Poisson ratio.
The surface tension is absent from (1) because the bulk
pattern has translational symmetry in the x̂ direction.
However, it is important to note that the sheet is still under
a tension �xx � �. Minimizing u½�� leads to a pattern

�ðyÞ ¼ 2

q

ffiffiffiffi
~�

p
sinðqyÞ; (2a)

�yy ¼ ðBq2 þ �g=q2Þ; (2b)

where the wave number q ¼ qo ¼ ð�g=BÞ1=4 and �yy ¼
�2

ffiffiffiffiffiffiffiffiffiffi
B�g

p
. As shown in Fig. 1, this correctly describes the

scaling of the wavelength of the wrinkles in the bulk. This
scaling has been experimentally tested [6,7], and more
broadly applied in situations where the bending energy is
balanced by substrate elasticity [8], capillary forces [9],
and tensile pre-stress [10].

We now turn to the main topic of this article, viz., the
cascade approaching the edge. In Fig. 2(a), we show for PS
films with t ¼ 85 to 246 nm, the increase in wave number
qðxÞ as a function of distance x from the edge. Since B�
t3, this represents a broad range of B. For all thicknesses,
qðxÞ increases to a value qe at the edge, that is 2 to 5 times
larger than the bulk value qo. The evolution to higher wave
numbers occurs over approximately the same distance
from the edge: though an exponential fit shows systematic
deviations, such a fit estimates the penetration length of the
edge into the bulk to be 1:8� 0:2 mm.

Intuitively, a higher wave number at the edge is to be
expected. The fluid meniscus follows the contour of the
edge of the sheet. To minimize the surface energy of the
air-water interface it is favorable to reduce the amplitude of
the wrinkles at the edge. In order to preserve inextensibil-
ity, the wave number increases. This cascade to finer
wrinkles terminates at a wave number, qe, where the gain
in surface energy is offset by the increased cost of bending.
Notwithstanding these plausible arguments, previous ex-
periments in this geometry [6] did not show a marked
effect at the boundary, and found that qe � qo. We thus
need to address some obvious issues: What are the relevant
parameters that dictate whether a cascade appears? What
governs the amplification of the bulk wavelength, and what
is the length over which the cascade occurs?

In order to understand wave number amplification in our
experiment, we estimate the energy cost of a wave number
qe at the edge. The capillary energy of an undulated
meniscus of wave number qe and amplitude �e is:

Ucap¼ð1=2Þ��2e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�g=�Þþq2e

p ¼ 2�ð~�=q2eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�g=�Þþq2e

p

[where we use Eq. (2b)]. Ucap, which is an energy per unit

length, is a decreasing function of qe, schematically plotted
in Fig. 3(a). To compare it to the energy cost per unit area
of the affected part of the sheet [Fig. 3(b)], we require the
length scale lp over which the pattern at the edge penetrates

into the sheet.
This leads us to consider the energetic effect of breaking

translational symmetry. The tension in the x̂ direction is
incorporated by modifying Eq. (1) to

u¼1
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The new term is the energy of the deformation in the x̂

60

40

20

0

 W
av

en
um

be
r,

 q
(x

) 
[m

m
-1

]

76543210
Distance to edge, x [mm]

 Thickness, t (nm)
85
121
158
207
246

a

b

2.5

2.0

1.5

1.0

q(
x)

/q
o

3210

x/Lc

γ  (Dyne/cm)
72
50
36

4

3

2

1

 q
(x

)/
q o

6050403020100

x qo

c

FIG. 2 (color online). (a) Wave number qðxÞ as a function of
distance x from the edge of the sheet. The length scale over
which the decay occurs does not change strongly with thickness t
of the sheet. Exponential fits (solid lines) to qðxÞ deviate from the
data but yield a decay length of 1:8� 0:2 mm. (b) qðxÞ=qo vs

x=Lc, where Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�g

p
. The data for three values of � show

good collapse. (c) The data of (a) with the scaled wave number
qðxÞ=qo vs the scaled distance from the edge xqo. Data collapse
is good at small and large xqo, but is poor at intermediate
distances indicating a multiscale evolution.

(a) (b)

FIG. 3 (color online). (a) The energy per length of the menis-

cus, UcapðqeÞ ¼ 2�ð~�=q2eÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�g=�Þ þ q2e

p
. (b) Energy per area of

a sheet with wave number q, uðqÞ ¼ ð~�=q2ÞBðq4 þ q4oÞ.
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direction under the interfacial tension �. To estimate the
penetration length lp, we consider the superposition

�ðx; yÞ ¼ �0ðxÞ cosðq0yÞ þ �eðxÞ cosðqeyÞ; (4)

and minimize (3) while preserving inextensibility along ŷ.
When the compressive force in the y direction is much
smaller than the tensile force in the x direction,
" � �=� � ffiffiffiffiffiffiffiffiffiffi

�gB
p

=� � 1, one finds [11] that the domi-

nant energies are bending ð B2 ð@
2�

@y2
Þ2Þ and tensile ðuT ¼

�
2 ð@�@xÞ2Þ. From the balance Bq40 � �l�2

p , we obtain lp �ffiffiffiffiffiffiffiffiffiffiffiffi
�=�g

p
, which is the capillary length, lc. This is consistent

both with the magnitude of the typical penetration length
found in Fig. 2(a), and with its insensitivity to the thickness
t. Notice that the stress ratio " ranges between 6� 10�4

and 3� 10�3 in our experiments, thus validating the re-
gime assumed in the foregoing argument. Furthermore, we
performed experiments by adding a surfactant at various
concentrations to the aqueous subphase, reducing � by a
factor of 2. The data collapse in Fig. 2(b) upon rescaling
x ! x=lc validates this argument.

Using this estimate of the penetration length, lp, we

return to the wavelength amplification ratio qe=q0: the

bending energy cost near the edge is Uedge � lpuðqeÞ �
lcB~�q2e. Setting the edge and meniscus energies to be

comparable, Uedge �Ucap we obtain qe � ð"Þ�1=6q0. This

argument shows that for " � 1 (as in our experiments) the
wave number amplification is a large effect. A similar
argument shows that for � 	 1 the edge effect is only a
small perturbation to the bulk pattern, in agreement with
[6]. However, the estimate Uedge � q2e rests on the assump-

tion of a single penetration length. This is an oversimplified
picture as the cascade shown in Fig. 2 proceeds via a
sequence of intermediate wave numbers. A full solution
of the nonlinear problem [12] reveals that this instability
results from a logarithmic dependence of Uedge � logqe,

which lowers the energetic cost for sufficiently large qe.
The cascade pattern is characterized by a hierarchy of

wave numbers qi intermediate between q0 and qe, each
with a penetration length lpðqiÞ characterizing the transi-

tions between zones dominated by wave numbers qi and
qiþ1. These lengths range from lp � lc for qi ! q0 to lp �
q�1
e for qi ! qe [11]. This reflects an enhancement of the

compression-tension ratio " towards the edge, Eq. (2b), the
compression increases with wave number as �ðxÞ � Bq2.
That the description in terms of a single penetration length
lp is simplified can be seen from Fig. 2(c), where we show

the scaled wave number qðxÞ=q0 vs xq0, the scaled distance
from the edge. This scaling yields good data collapse far
from the edge, and even close to the edge. However, the
data do not collapse in between, indicating a q-dependent
penetration length lpðqÞ.

Thus far, our analysis of the wave number amplification
has shed no light on the nature of the cascade itself. Awell-
known example of an elastic cascade was constructed by
Pomeau and Rica [13] for the ‘‘curtain geometry’’ of a

tension-free sheet rippled under a compressive force but
constrained to be flat at one edge. They showed that the
matching of the ripples to the flat edge (qe ! 1) could be
achieved by hierarchy of branching events, in which each
wrinkle branches into a succession of sharp folds with flat
faces.
One superficial difference between what we observe and

the Pomeau-Rica cascade is that our cascade terminates at
a finite wave number, and therefore passes through only a
few generations. The more profound difference, as was
pointed out in [12], stems from the fact that our sheets
experience a tension along the uncompressed direction.
Any deviation from a one-dimensional pattern imposes
curvature in both directions; this Gaussian curvature gen-
erates in-plane stretching energy controlled by a modulus
Y ¼ Et. In the Pomeau-Rica scenario, in the absence of
tension, the dominant contribution to the strain energy is
the anharmonic energy density uG � Y�2x �

2
y , whose mini-

mization leads to localized Gaussian curvature along a
sequence of sharp ridges [14]. However, the consequence
of the applied tension is that the focusing of Gaussian
curvature does not relieve the strain energy at other points:
as noted in Eq. (3), the tension term uT penalizes slope, and
is nonzero even on flat facets where the Gaussian curvature
vanishes. This mechanism thus favors a smooth reduction
of the amplitude, which is accomplished by the superpo-
sition of a finite number of Fourier modes with distinct
wave numbers. Smooth cascades can thus be expected if

uT > uG [15]. For ~� � 1, this condition translates to small
compression-tension ratio: " & 1 [12]. In our experiments
the value of " � 1, indicating a novel, smooth hierarchy,
markedly different from the Pomeau-Rica stress-focusing
cascade.
A closer look at the cascade, as shown in the magnified

view of Fig. 4(a), supports the scenario of a smooth
mechanism in which larger amplitudes of higher wave-
number Fourier components are smoothly mixed in as one
approaches the edge. In Fig. 4(b) we present a more
quantitative measure of the smoothness of the cascade.
At a given distance x from the uncompressed edge we
determine from the image, the separations d, between the
crests of the wrinkles. At each value of x, we show a
histogram of qod=ð2�Þ, the normalized separation between
wrinkles. Far away from the edge, the separations are all
concentrated at qod=ð2�Þ ¼ 1. As expected, closer to the
edge, more crests are formed, and at smaller values of d.
Importantly, none of the histograms show significant
weight near d ¼ 0. In a scenario where wrinkles divide
by localized branching, one might expect a preponderance
of small values of d just after a branch point, between
sibling branches of the same parent wrinkle. That appears
not to be the case in Fig. 4, with separations flowing
smoothly to a mixture of higher Fourier components.
The three forces operative in this problem—gravity,

bending, and capillarity—can be combined in pairs to

yield three distinct length scales: ðB=�gÞ1=4, ðB=�Þ1=2,
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and lc ¼ ð�=�gÞ1=2. The first of these is qo, the second, an
elastocapillary length [17] which controls qe, and the third
is the capillary length, which determines the length of the
cascade. However, the stress ratio " ¼ �=� dictates the
overall morphology of the pattern in our experiments.
Surface tension plays a dual role in our experiments,
determining both the energy of the fluid meniscus, Ucap,

as well as the tension applied in the uncompressed direc-
tion. In principle, these are different effects that could be
independently tuned. Increasing the capillary energy cost
of the edge can tune a transition from the regime of our
experiment to that of stiffer sheets, in which the effect of
the edge is small. On the other hand, decreasing the applied
tension could drive a transition from the smooth, energy-
delocalized cascades we observe, to a regime of localized
branching [13] with energy focusing. Thus, our observa-
tions open the way to the exploration of a rich phase
diagram of both branched and smooth structures [12],
and possibly even flat, stretched boundary layers [16].
The relationship between the elastic cascades we observe

and cascades in sheets with intrinsically non-Euclidean
metrics [18] has yet to be uncovered. It also remains to
be seen whether analogues of our smooth cascades may be
found in other microstructured materials [1,2] where
branching cascades have been observed.
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FIG. 4 (color online). (a) A magnified image of the cascade.
(b) At each value of x, a histogram of the scaled separation,
qod=ð2�Þ, between crests, for several values of distance x from
the edge. Data were collected from two films with t ¼ 246 nm.
The separations d, are determined from the locations of maxima
of the intensity in the ŷ direction.
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