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Dense self-avoiding polymer chains in strictly two dimensions are compact objects with fractal

contours. Using scaling arguments and molecular dynamics simulations (with negligible momentum

conservation) it is shown that correlated amoebalike fluctuations of the (sub)chain contours dominate the

relaxation dynamics on all scales. The incompressibility of the melt and the compactness of (sub)chains

impose a scale-free constraint on the contour fluctuations. This leads to strong long range spatiotemporal

correlations of the displacement field as shown, e.g., by the (negative) algebraic decay of the center-of-

mass velocity correlation function CðtÞ � �1=t6=5 with time t.
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Dense, essentially incompressible two-dimensional
(2D) simple liquids with conserved momentum are known
to exhibit strong, long-range correlations of the particle
displacement field [1,2]. The coupling of displacement and
momentum fields manifests itself in d ¼ 2 dimensions by
the slow algebraic decay of the velocity correlation func-

tion (VCF), CðtÞ � hvðtÞ � vð0Þi � þ1=td=2 ¼ þ1=t with
vðtÞ being the particle velocity at time t, as revealed by the
seminal molecular dynamics (MD) simulations of Alder
and Wainwright [1]. Interestingly, even if the momentum
conservation is dropped, as justified for overdamped dense
colloidal suspensions [2,3], scale-free—albeit much
weaker—correlations of the displacement field are to be
expected due to the incompressibility constraint [2,3]. The
coupling of a tagged colloid to the collective density dipole
field, created by the colloid’s own displacement at t ¼ 0,
leads to a negative algebraic long-time decay of the VCF,

CðtÞ � �1=td=2þ1 ¼ �1=t2 [2–4]. In this Letter, we ex-
plore another complex fluid, a 2D polymer melt, and dem-
onstrate that the�1=t2 long-time behavior of the center-of-
mass VCF is preceded by another much slower algebraic
decay which results from the interplay of melt incompres-
sibility and equilibrium conformational properties.

As shown in Fig. 1, we investigate the displacement
correlations in strictly 2D melts of ‘‘self-avoiding walks’’
without monomer overlap and chain crossing [5,6]. We
remind the reader that these chains adopt compact confor-

mations of typical size RðNÞ � N1=d [5–10] with fractal
contours of perimeter LðNÞ � RðNÞdp , N being the chain
length and dp ¼ 5=4 the fractal line dimension [5,6].

Because of the self-similar structure of the chains, com-
pactness and perimeter fractality repeat for subchains of
arc lengths s � N down to a few monomers [5,6,11]. Since
the fractality of the (sub)chain contours precludes a finite
line tension of the perimeter, there should be no activation
barrier between two chain conformations and amoebalike
shape fluctuations are not suppressed exponentially [5,8].
Considering a (sub)chain deformed by a thermal fluctua-
tion dissipating the acquired energy kBT within a relaxa-

tion time �ðsÞ by friction at its contour, it was predicted that
the relaxation time scales as [5,12]

�ðsÞ � LðsÞ3 � s� with � ¼ 3dp=d ¼ 15=8< 2; (1)

i.e., the dynamics should thus be slightly faster than that of
Rouse-like models where � ¼ 2 [5,13]. We will confirm
Eq. (1) numerically below. More importantly, extending
[5] we demonstrate in this study by means of scaling
arguments and MD simulations that the amoebalike con-
tour fluctuations are highly correlated. As seen from the
flow patterns in Fig. 1, this implies strong long range
spatiotemporal correlations of the displacement field simi-
lar to those obtained for liquids with momentum conser-
vation, although our systems are obtained by MD

FIG. 1 (color online). Snapshot of the monomer displacement
field (small arrows) in a strictly two-dimensional polymer melt
of ‘‘self-avoiding walks’’ [5,6] as obtained by MD simulations
with negligible momentum conservation. The existence of long
range dynamical correlations is obvious from the observed flow
pattern. The contour monomers (interacting with monomers
from other chains) for one chain before and after the time
interval corresponding to the displacement field are indicated
by dark and light spheres, respectively.
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simulations using a Langevin thermostat for which mo-
mentum conservation is irrelevant [14,15]. We will show
that these long range correlations correspond for times t �
�ðsÞ to an analytic decay of the VCF associated with the
center of mass (c.m.) of the (sub)chains

Cðt; sÞ � �
�
RðsÞ
�ðsÞ

�
2
�

t

�ðsÞ
��2þð1þ�Þ=�

(2)

��s�1=2t�6=5 (3)

with � ¼ 1=2 being a second dynamical power-law expo-
nent which, together with the exponent�, characterizes the
proposed ‘‘amoeba diffusion model.’’

As in previous work on static properties [6] we represent
the polymer chains by the Kremer-Grest bead-spring
model [16]. Lennard-Jones units are employed in the fol-
lowing. We focus on monodisperse melts at temperature
T ¼ 1 and monomer number density � ¼ 7=8 correspond-
ing to 98 304 monomers in a periodic simulation box with
chain lengths ranging up to N ¼ 1024. The equations of
motion are solved via the Velocity-Verlet algorithm using a
Langevin thermostat with the standard choice for the fric-
tion constant, � ¼ 0:5, which leads to overdamped motion
on the monomer scale [14,15].

The numerical verification of the first key element
of the amoeba diffusion model, Eq. (1), from the measured
relaxation times is difficult (albeit possible as shown in
Fig. 4) since the exponent� is rather close to that of Rouse-
like models [5]. More readily, it can be demonstrated from
the functional form of various dynamic correlation
functions, as the monomer mean-square displacement
(MSD) �2ðtÞ � hu2i ðtÞii presented in Fig. 2 with uiðtÞ ¼
riðtÞ � rið0Þ being the displacement vector of monomer i.
We note that the ameoba dynamics is characterized by one
time scale �ðNÞ � N� and the reduced MSD �2ðtÞ=R2ðNÞ
must be a function of t=�ðNÞ. Since the MSD is chain

length independent for short times t � �ðNÞ, it follows
that

�2ðtÞ � R2ðNÞ½t=�ðNÞ�1=� � N0t1=�: (4)

The vertical axis of Fig. 2 is rescaled by the amoeba
prediction to show that the data approach this limit for
largeN while the Rouse model (dashed line) is inconsistent
with our data. Note that our longest chain, N ¼ 1024, fits
the amoeba model (horizontal line) over two decades. This
confirms the first exponent of the amoeba diffusion model;
we now turn to discuss the second exponent �.
Because of the compactness of the chains a tagged

monomer moving over a distance �ðtÞ must drag along
gðtÞ � �2ðtÞ monomers it is connected to. The monomer
displacement field is thus at least correlated locally on the
scale �ðtÞ of this ‘‘dynamical blob.’’ That the displacement
field is in fact correlated on much larger scales, as sug-
gested by Fig. 1, is addressed in Fig. 3 which displays the
temporal correlations of the c.m. displacement vector
ucmðtÞ ¼

P
iuiðtÞ=s of (sub)chains. Focusing first on the

MSD �2
cmðtÞ � hu2cmðtÞi (main panel) we rescaled the mea-

sured MSD in terms of the dynamical blob and plot
�cmðtÞ=�ðtÞ as a function of the rescaled time x ¼
�ðtÞ=RðsÞ. This allows us to collapse all data onto one
master curve. As one expects, �cmðtÞ=�ðtÞ ! 1 for x 	
1, i.e., t 	 �ðsÞ, when the (sub)chain has moved en bloc
over a distance comparable to its own size. For smaller
times we obtain over nearly three decades a power law,

�cmðtÞ=�ðtÞ � ½�ðtÞ=RðsÞ�� with � � 1=2 (5)

(bold line) [17]. Clearly, if there were no long range
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FIG. 2 (color online). Monomer MSD �2ðtÞ for chains of
length N as indicated. The vertical axis is rescaled with the
prediction �2ðtÞ � t8=15 of the amoeba diffusion model. The
transient short-time regime is fitted to a phenomenological
power law. For large times (t 	 103) the data approach with
increasing N the predicted horizontal line.

10
-2

10
-1

10
0

10
1

x = ξ(t)/R(s)

10
-1

10
0

ξ cm
(t

)/
ξ(

t)

N=s=512
N=s=1024
N=1024,s=64
N=1024,s=256
N=1024,s=512

10
-3

10
-2

10
-1

10
0

10
1

x=t/τ(N)

10
-4

10
-2

10
0

10
2

y
N=16
N=64
N=256
N=512
N=1024

full correlation

β =1/2

β=
1

-6/5 δt=200

-2

τ(N)=N
15/8

FIG. 3 (color online). c.m. displacement for chains of length N
and subchains of length s for N ¼ 1024 as indicated. Main
panel: Scaling of the ratio �cmðtÞ=�ðtÞ as a function of x ¼
�ðtÞ=RðsÞ with RðsÞ being the typical size of the (sub)chain.
Demonstrating long range correlations between dynamical blobs
of size �ðtÞ a power-law exponent � ¼ 1=2 is observed for x &
1. Inset: Collapse of the rescaled VCF y ¼ �Cðt; NÞ=½RðNÞ=
�ðNÞ�2 vs reduced time x ¼ t=�ðNÞ for different N and �t ¼
200. The bold line indicates the exponent �6=5 predicted by
Eq. (3) for x � 1.
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correlations between the dynamical blobs, �2
cmðtÞ would be

given by �2ðtÞ times a factor 1=ðs=gðtÞÞ2 due to the nor-
malization of the c.m. times the number of uncorrelated
dynamical blobs, s=gðtÞ. This would imply �cmðtÞ �
�2ðtÞ=RðsÞ, i.e., � ¼ 1 (dashed line), at variance to our
data. That an exponent �< 1 is observed is expected from
the flow pattern shown in Fig. 1; we still need to explain
why the exponent should actually become � ¼ 1=2.
Because of the incompressibility of the melt and the com-
pactness of the (sub)chains the c.m. can only change by
means of contour fluctuations. These fluctuations must be
correlated since the overall (sub)chain surface is constant
for all s and a subsegment of gðtÞ monomers added at one
point of the contour corresponds to the same mass taken off
the contour at a distance RðsÞ. The MSD �2

cmðtÞ is thus
given by R2ðsÞ times the normalization factor 1=½s=gðtÞ�2
times the number RðsÞ=�ðtÞ of independent blobs one can
create and annihilate on the contour of the (sub)chain [18].
This leads to �2

cmðtÞ � �2ðtÞ=RðsÞ, i.e., � ¼ 1=2 as ob-
served. The existence of long range correlations between
dynamical blobs due to the constant surface constraint is
the central result of this Letter.

Using Eq. (4) it follows from Eq. (5) that as a function of
time one expects

�2
cmðtÞ � s��tð1þ�Þ=� � s�1=2t4=5 (6)

for t � �ðsÞ and 1 � s � N: i.e., the stochastic forces
acting on the (sub)chain c.m. are strongly colored. The
VCF Cðt; sÞ � hvcmðtÞ � vcmð0Þi � @2t �

2
cmðtÞ [2] of the

(sub)chains allows an independent numerical verification
of the claimed power laws with respect to s and t. We
remind the reader that the VCF would vanish exponentially
if only white forces were present [2,17]. As a corollary of
Eqs. (1), (4), and (5) one obtains instead the analytic decay
of the VCF announced in Eqs. (2) and (3). Note that the
scaling result has been reformulated in Eq. (2) in terms of
the natural scaling variables, the velocity scale RðsÞ=�ðsÞ
and the reduced time x ¼ t=�ðsÞ. These predictions are
tested numerically in the inset of Fig. 3 where the ‘‘veloc-
ity’’ vcmðtÞ � ucmð�tÞ=�t of a (sub)chain at time t has been
obtained from its c.m. displacement ucmð�tÞ for a small
time increment �t � t. Focusing on chain displacements
(s ¼ N) the rescaled VCF y ¼ �Cðt; NÞ=½RðNÞ=�ðNÞ�2 is
plotted as a function of the reduced time x assuming

�ðNÞ � N15=8. This leads to a perfect data collapse for all
N demonstrating that y is indeed a scaling function of x
[17]. The exponent �6=5 predicted for small reduced
times x � 1 nicely fits the data over three decades in
time. The decay of the VCF becomes much more rapid
for x 	 1 with an exponent �2 (thin line) fitting the data,
i.e., Cðt; NÞ � �N=t2. For large times, the chains thus
move as expected for overdamped two-dimensional col-
loids [2,4].

Interestingly, the amoeba diffusion model can, in prin-
ciple, be verified experimentally by means of the dynami-
cal intrachain structure factor Fðq; tÞwith q being the wave

vector [13]. How Fðq; tÞ may be analyzed is addressed in
Fig. 4 for N ¼ 1024. The inset on the left presents the
relaxation time �q defined by Fðq; t ¼ �qÞ=FðqÞ ¼ 1=e.

The vertical axis is rescaled by the Rouse prediction �q �
1=q4 [13]. The scaling of �q is a direct consequence of

Eq. (1),

�q � s� � RðsÞ�=� � 1=q�=� ¼ 1=q15=4: (7)

As indicated by the bold line our data increase as �qq
4 �

q1=4 over 1 order of magnitude for q > 1=RðNÞ, confirming
thus again Eq. (1). The main panel and the inset on the right
present the reduced dynamical structure factor y ¼
1� Fðq; tÞ=FðqÞ for different reduced wave vectors Q ¼
RðNÞq. In the Guinier limit (right inset) Fðq; tÞ probes the
overall chain motion and the horizontal scaling variable is
x ¼ �cmðtÞq using the c.m. displacement �cmðtÞ at time t
discussed above. For small x, Fðq; tÞ can be expanded [13],
yielding y ¼ x2=4 in agreement with the data. The main
panel presents wave vectors Q> 1 which probe the
monomer dynamics within the chain. A perfect data col-
lapse is obtained if y is traced vs x ¼ �ðtÞq with �ðtÞ being
the monomer displacement. For small times we find a
power law y � x� with � ¼ 3 rather than the exponent
� ¼ 4 of the Rouse model. This exponent � can be under-
stood by matching the small-Q and the large-Q regimes by
choosing a wave vector q ¼ 1=RðNÞ which implies
½�ðtÞ=RðNÞ�� � ½�cmðtÞ=RðNÞ�2. Comparing this with
Eq. (5) yields � ¼ 2þ 2� ¼ 3. The experimental obser-
vation of a power-law slope of the reduced dynamical
structure factor with � � 3 would thus confirm long range
correlations characterized by an exponent � � 1=2.
In summary, using scaling arguments and MD simula-

tions we investigated the equilibrium dynamics of strictly
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FIG. 4 (color online). Dynamical structure factor Fðq; tÞ for
N ¼ 1024 with Q ¼ RðNÞq as indicated. The relaxation time �q
is presented in the left inset. The main panel and the right inset
show the short-time behavior of the reduced dynamic structure
factor y ¼ 1� Fðq; tÞ=FðqÞ for large and small Q, respectively.
The dashed lines correspond to the Rouse model, the bold lines
to the amoeba diffusion model.
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2D polymer melts without chain overlap [5,6]. Following
[5] we argued that the chain relaxation is dominated by
amoebalike fluctuations of the fractal contours of the com-
pact (sub)chains. These fluctuations may be described in
terms of two exponents � ¼ 15=8 and � ¼ 1=2 character-
izing, respectively, the relaxation time of the (sub)chains
(as predicted by [5]) and the long range correlations
of the monomer displacement field of a tagged (sub)chain,
Eq. (5). The latter correlations arise due to the compactness
of the chains and the incompressibility of the melt imply-
ing a scale-free constraint on the c.m. displacements as
manifested by the observed algebraic decay of the associ-
ated VCF, Eq. (3). The exponent � may be verified experi-
mentally by means of the dynamical intrachain structure
factor Fðq; tÞ predicted to scale as 1� Fðq; tÞ=FðqÞ � q3

for short times and q 	 1=RðNÞ.
Systems of dense polymer layers are of experimental

relevance [9,10,19,20]. It should thus be stressed that
several modeling assumptions made above may readily
be relaxed: (i) Our predictions are not restricted to polymer
melts but should also hold in semidilute solutions [7]
provided that the chains are sufficiently long. Assuming a
density independent effective local mobility, standard den-
sity crossover scaling [7] suggests that the self-diffusion

constant, Dsð�;NÞ � �1=4N�7=8, increases strongly with
density rather than to remain constant as implied by the
Rouse model. This scaling may allow us to interpret recent
experimental data [19]. (ii) We have assumed sufficient
frictional contact of the monomers to the supporting sur-
face to suppress long range correlations due to momentum
conservation. This boundary condition is indeed well jus-
tified experimentally for polymers adsorbed on rough solid
surfaces [10,19] or phospholipid bilayers [9]. Since for
perfectly smooth surfaces or fluid-air interfaces [20] this
may not hold, it should be emphasized that even for friction
constants � � 0:5, where standard 2D hydrodynamics
kicks in, the exponents � and � are numerically found to
hold for internal modes computed in the c.m. frame of the
chains. (iii) Our discussion has focused on strictly 2D self-
avoiding walks without chain crossings. In practice, so-
called ‘‘self-avoiding trails’’ with finite chain crossing
probability [5] may be more relevant being readily realized
experimentally by ultrathin polymer films where the 2D
projections of chain loops can cross. Preliminary numeri-
cal results suggest, however, that if crossings are allowed
with a penalty of order 5kBT both static and dynamic
properties remain well described (at least for chains with
N � 1024) by the infinite penalty limit we have fo-
cused on.
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