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We determine the statistics of the local tube width in F-actin solutions, beyond the usually reported

mean value. Our experimental observations are explained by a segment fluid theory based on the binary

collision approximation. In this systematic generalization of the standard mean-field approach, effective

polymer segments interact via a potential representing the topological constraints. The analytically

predicted universal tube width distribution with a stretched tail is in good agreement with the data.
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The Edwards tube model provides a simple phenome-
nological description of the complicated topological con-
straints in entangled solutions of flexible polymers [1].
Using scaling arguments, Odijk [2], Semenov [3], and
others have generalized the idea to stiff polymers with a
persistence length lp larger than the characteristic back-

bone length between mutual collisions, which plays the
role of the entanglement length in this context. Stiff poly-
mers constitute an important and biologically relevant
class of polymers, as they represent the major structural
and stress-bearing units of the cytoskeleton of animal cells
in the form of filamentous actin and microtubules [4].
Their large lp and contour length L (on the order of

10 �m for actin) have opened the possibility of direct
microscopic visualizations of the tube [5]. Beyond its
intuitive appeal and obvious relevance to single filament
experiments in entangled solutions [6,7], the tube enters
explicit calculations of the overall mechanical properties of
stiff polymer solutions [8–10]. The latter have been mea-
sured rheometrically for biopolymers such as actin [11–14]
and pectin [15], as well as for self-assembling synthetic
networks [16,17]. While theoretical approaches so far have
employed a homogeneity (or mean-field) assumption,
treating the tube radius as a constant, experiments [5–
7,18,19] indicate substantial heterogeneities, which re-
cently also have been found in simulations [9].

In this Letter, we present a systematic study of these
heterogeneities in F-actin solutions, which we quantify
in terms of the local tube radius profile RðsÞ [cf.
Figs. 1(a)–1(c)]. From RðsÞ we infer the entanglement
length (Fig. 4) and, independently, the tube radius distri-
bution PðRÞ [Fig. 1(d)]. The latter plays a similar role as
the distribution of void spaces or pores in other disordered
materials, such as packings of grains or colloidal particles
[20]. As a main result, PðRÞ is found to be described by a
universal master function with a stretched Gaussian tail
(Fig. 3, inset). We develop a systematic theory of tube
fluctuations that explains our data and provides the basis
for a more comprehensive characterization of the structural

and elastic properties of stiff polymer solutions than pos-
sible within the conventional mean-field theory [8].
F-actin solutions were prepared at various monomer

concentrations c [21]. Rhodamine-phalloidin labeled solu-
tions were mixed with unlabeled solutions at a ratio of
1:1000. Time series of typically 150 pictures of individual
labeled filaments were recorded using an inverse confocal
microscope (LSM510, Carl Zeiss Jena, Germany). These

FIG. 1 (color online). (a) Superimposed confocal microscopy
images of a fluorescent actin filament in a background solution
and a spline representing the tube backbone; scale bar, 5 �m;
(b) rectified image; (c) tube radius profile RðsÞ determined as
standard deviation from Gaussian fits to the transverse intensity
profile; (d) normalized tube radius distribution PðRÞ obtained
from cumulative contour lengths of 536, 804, 301, 225, and
116 �m for actin concentrations c ¼ 0:2, 0.4, 0.6, 0.8,
1:0 mg=ml, respectively. Solid lines represent a global fit by
Eq. (3) with � ¼ 5:95 �m�2c ½mg=ml� and L ¼ 0:91L1

e , in-
cluding corrections accounting for the line spread function [21].
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pictures were superimposed to obtain a time-averaged
image of the fluctuating test filament, where intensity
reflects the residence time of the filament [Fig. 1(a)].
Smooth tube contours connecting points of maximum
intensity were constructed subject to a curvature-
minimization constraint. The local tube radius RðsÞ was
identified with the standard deviation of Gaussians fitted to
the transverse intensity profiles of a rectified tube image, as
exemplified in Figs. 1(b) and 1(c) [21]. Along a single test
filament, RðsÞ exhibits pronounced fluctuations, which
were binned to sample the tube radius distribution PðRÞ.
The result is depicted in Fig. 1(d) (shaded areas) for
various actin concentrations c. The peak position and
width, corresponding to the typical value and the fluctua-
tions of R, respectively, are seen to decrease with increas-
ing c. Yet, as we demonstrate below, the non-Gaussian
skewed and leptokurtic shape of PðRÞ is well described
by a c-independent master function (Fig. 3, inset).

We develop our theoretical approach along the lines of
the binary collision approximation (BCA) [8,9]. It replaces
the complicated topological constraints in an entangled
polymer solution by an effective model: an individual
test polymer of length L in a tubelike harmonic confine-
ment potential ��h2=2 per unit length, where hðsÞ parame-
trizes the transverse contour undulations along the back-
bone. In a self-consistent pair approximation, the tube
potential is required to represent the cumulative effect of
independent pair collisions with the background polymers.
These collisions are not to be understood as bare micro-
scopic encounters of polymer backbones, though, but
rather refer to effective tube collisions. The bare inter-
actions caused by the impenetrability of the polymer back-
bones are coarse-grained over the fast local conformational
fluctuations of two colliding polymers confined to their
tubes, which prescribe a ‘‘quenched’’ geometry for them.
The corresponding averages in a given tube configuration
and over different tube configurations are represented by
brackets h� � �i �� and over-bars � � �, respectively. The over-
bar on the tube stiffness �� thus indicates that the latter
represents the cumulative contribution from collisions in
all possible geometries and topologies as opposed to colli-
sions in a prescribed tube configuration. A subtlety in
counting states is that the topology of stiff but bendable
polymers, as opposed to rigid rods, is not uniquely deter-
mined by the center-of-mass positions and orientations.
Conversely, in any given topology � ¼ � (or ‘‘above’’
and ‘‘below’’), positive and negative ‘‘distances’’ x + 0
need to be distinguished, as sketched for � ¼ þ in
Fig. 2(a).

The wormlike chain model in the weakly bending rod
limit with eigenmodes hðqÞ of the undulations hðsÞ is
employed. Equipartition yields hhðqÞ � hðq0Þi �� ¼ 2�ðqþ
q0Þ=ðlpq4 þ ��Þ for L � L1

e , where L
1
e � ðlp= ��Þ1=4 is the

mean-field entanglement length [8]. Natural units with
kBT ¼ 1, so that lp is synonymous with the bending rigid-

ity, are used throughout. The mean-field (projected) tube

radius then follows as R1 � Rð ��Þ, given by the function

R2ð�Þ �
Z ds

2L
hh2i� ¼ 2�3=2l�1=4

p ��3=4 (1)

evaluated at � ¼ ��. Similarly, one gets the partition sum
for the Gaussian contour undulations hðsÞ [8]. Its negative
logarithm is the mentioned coarse-grained interaction or

‘‘BCA potential’’ F�ðxÞ¼�lnferfc½�2�1=2�x=ðR2
0þ

R2
1Þ1=2�=2g between two tubes of radii R0 and R1 at sepa-

ration x along the direction of nearest approach. If we al-
low for a uniform transverse displacement h of the test tube
at an angle c relative to the x direction, which does not
change the topology, the contribution to the confinement
strength resulting from collisions in the prescribed tube
configuration follows as � ¼ L�1@2hF�ðx� h cosc Þjh¼0.

In mean-field approximation, setting R0 ¼ R1 � R1 and
performing the configurational average [8] yields the tube
strength �� as a function of R1 and the line concentration �

(polymer length per volume). From Eq. (1), R1 ¼
0:66��3=5l�1=5

p is finally self-consistently determined [21].
The conventional BCA, as a mean-field theory, is ex-

clusively concerned with the average values �� and R1. To
get hold of the measured spatial tube width fluctuations, we
introduce a canonical ensemble of N þ 1 independent
entanglement segments of length L characterized by their
individual fields �i and corresponding tube radii Ri before
averaging over the segment ensemble. In a formal general-
ization of the BCA that we call the segment fluid model,
any overlapping pair in the ensemble interacts with the
BCA pair potential, now written as V�ðxÞ �
�ðr;u;u0ÞF�ðxÞ with the characteristic function � of the
overlap between two segments with orientations u, u0
separated by r. As depicted in Fig. 2(b), the two segments
are said to ‘‘collide’’ or to ‘‘overlap’’ if the projection of
the center-of-mass of the segment with orientation u0 onto
the u-u0 plane falls into the shaded area with edges of
length L and the segment with orientation u at its center.
All pairs of segments are assigned a binary topological
state variable�ij ¼ �. The confinement potential for a test

segment with index 0 is then computed as the cumulative
effect from the collisions with all overlapping segments.
Explicitly, after averaging over the uniformly distributed
angles c 0j of perturbing displacements of the test segment,

FIG. 2 (color online). (a) A pair of colliding filaments is
assigned a ‘‘distance’’ x and ‘‘topology’’ � ¼ � as exemplified
for � ¼ þ with x > 0 (left) and x < 0 (right). A reflection at the
horizontal midplane amounts to x ! �x, � ! ��. (b) Overlap
region (shaded) for two segments of length L with orientations
u, u0 enclosing an arbitrary angle.
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its individual tube strength is written as a local field
�0 ¼

P
N
i¼1 �0i with �0i ¼ ð2LÞ�1V00

�0i
ðx0iÞ. The average

tube strength �� is then obtained by taking the configura-
tional average, i.e., by summing �0, weighted by the
Boltzmann factor for all pair interactions, over all top-
ologies �ij and positions and orientations of the segments.

We now apply this formalism to calculate the distribu-
tion Pð�Þ of tube strengths. For the average over topolo-
gies we exploit the identity e�Vþ þ e�V� ¼ 1 for mutually
overlapping segments, such that Boltzmann factors not
involving the test segment cancel out in the partition
sum. This is a consequence of the topological origin of
the effective pair interactions. Moreover, due to the pair
approximation, all interacting pairs are equivalent so that
only one representative collision needs to be considered
explicitly. In the thermodynamic limit N ! 1, the char-

acteristic function ~PðtÞ ¼ eit� of Pð�Þ then follows from
the identity ð1þ x=NÞN ! ex as

~PðtÞ ¼ exp

�
n
Z

dr1
du1

4�

�X
�

eit�01�V�ðx01Þ � 1

�
�

�
(2)

with the segment concentration n � ðN þ 1Þ=V ¼ �=L.
By a numerical inverse Fourier transform, Pð�Þ is ob-
tained, which we recognize as the Holtzmark local field
distribution of uncorrelated particles [22]. The tube radius
distribution PðRÞ then follows from Pð�Þ by applying
Eq. (1). In Fig. 3 (solid lines) it is shown for the special
case of a pair potential V� with a common average range
Ri � �R for all segments i.

To validate the result, numerical (Monte Carlo) integra-
tion of a fluid of effective segments under the same as-
sumptions as used in the theory was performed [21] [see
Fig. 3 (dots)]. An examination of the numerical results
establishes that the underlying asymmetric distribution
Pð�Þ is well approximated by a gamma distribution
�k;�ð�Þ. Its shape and scale parameters, k ¼ 4:013�L �R
and � ¼ 0:125ðL �R2Þ�1, are determined by matching its
first two cumulants with the predictions from Eq. (2). Via
Eq. (1), an analytical expression for PðRÞ ensues,

PðRÞ¼ 8

3Rðk�1Þ! expð�yÞyk; y� 1

4l1=3p R8=3�
: (3)

It is compared with our numerical results for a fixed
prescribed segment length L and various reduced concen-
trations �L �R in Fig. 3.

What remains to be done is to identify the physical
meaning of the effective segment length L. Qualitatively,
one expects it to be equal to the mean-field entanglement

length L1
e ¼ ðlp= ��Þ1=4. The latter may in turn be ex-

pressed in terms of the mean-field tube radius R1 and the

line concentration �, respectively. Via Eq. (1), L1
e ¼ffiffiffi

2
p ðR1Þ2=3l1=3p / ��2=5. For the natural choice of L ¼
L1
e , the mean tube radius �R � Rð�Þ follows from a nu-

merical solution of the implicit equation �R ¼ R
dRRPðRÞ

as �R ¼ 1:15R1. Its close match with the mean-field value

R1 ¼ limL!1 �R suggests to parametrize the distribution

PðRÞ by the mean-field value R1 / ��3=5 for �R, with
negligible error. The shape parameter k thereupon becomes
independent of � and only depends on L=L1

e . The corre-
sponding predictions of Eq. (3) compare favorably with the
measured tube radius distribution, as demonstrated in
Fig. 1(d). In this comparison, L=L1

e and �=c are used as
global concentration-independent fit parameters. While the
fit does indeed corroborate the expectation L=L1

e � 1, �=c
turns out to be about a factor of 6.6 smaller than estimated
from the molecular weight and structure of monomeric
actin [8]. This numerical discrepancy can be eliminated
without significant consequences for the quality of the fit
and the value of L=L1

e [23].
Note that Eq. (3) implies that the concentration de-

pendence enters the tube radius distribution only through
the average tube radius �R, such that �RPðRÞ defines a
concentration-independent master function of R= �R. The
inset of Fig. 3 (symbols) demonstrates that the data indeed
scale satisfactorily. The semilogarithmic representation
reveals some systematic deviation of Eq. (3) (dashed)
from the data, however. This shortcoming is due to the
preaveraging Ri � �R employed in the derivation of Eq. (3),
and can be overcome by evaluating our systematic theory
more accurately. To this end, the variable tube radius R0 of
the test segment in the BCA potential is self-consistently
identified with the argument R of the distribution PðRÞ,
and only the radius R1 of the representative collision
partner is preaveraged. This amounts to replacing �R in
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FIG. 3 (color online). Dimensionless tube radius distribution
~Pð ~RÞ ( ~Pd ~R ¼ PdRÞ with scaling variable ~R � L�3=8 �R�3=4l1=8p R
for reduced concentrations �L �R ¼ 0:5, 1, 2 (bottom to top):
Holtzmark distribution, Eq. (2) (solid line); gamma distribution
approximation, Eq. (3) (dashed line); numerical integration
(dotted line). A bimodal structure develops if the theory is
pushed towards the (unphysical) limit �L �R ! 0. Inset:
Rescaled distribution as a function of R= �R in semilogarithmic
representation: experimental data for c ¼ 0:2 (circles), 0.4
(squares), 0.6 (diamonds), 0.8 (upright triangles), and
1:0 mg=ml (downward-facing triangles), analytical approxima-
tion from Eq. (3) as in Fig. 1 (dashed line), and self-consistent
theory described in the main text with a slightly renormalized
value of the segment length L ¼ 1:62Le (solid line).
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Eq. (3) by 2�1=2½R2 þ ðR1Þ2�1=2, before substituting � ¼
ðR1=0:66Þ�5=3l�1=3

p . Moreover, the segment length L is
taken to be proportional to the local entanglement length,

Le ¼
ffiffiffi
2

p
R2=3l1=3p . The resulting normalized tube radius

distribution (solid line in the inset of Fig. 3) is in excellent
agreement with our experimental data. It exhibits (up to a

spurious logarithm) a tail PðRÞ / exp½�ðR= �RÞ5=3�, similar
to what has recently been proposed on empirical grounds
[19].

A further consistency check for the developed theory is
provided by the spatial autocorrelation of the tube radius
profile in Fig. 1(c). It should decay over a characteristic
length scale comparable to the entanglement length. The
rescaled autocovariance functions determined from a large
number of tube radius profiles for various concentrations
are shown in Fig. 4 (left panel), rescaled with their initial
slope 	�1. Indeed, the concentration scaling of 	 thus
obtained (right panel) compares favorably with the expec-

tation 	 ’ L1
e / c�2=5.

The fact that heterogeneities give rise to stretched tails in
PðRÞ underscores the importance of shifting the attention
from characteristic ‘‘numbers’’ for R, Le, etc. [11], to their
skewed leptokurtic distributions. As demonstrated above,
these are readily accessible in our BCA-based segment
fluid model. For instance, subtle nonsteric corrections to
the value of the tube radius R, e.g., due to transient electro-
static attraction mediated by divalent counterions [24],
could systematically be studied by means of PðRÞ in the
future. Our combined experimental and theoretical results
might also hold the key to a microscopic explanation of the
ubiquitously observed broad distribution of microrheolog-
ical plateau moduli [18,25].
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FIG. 4 (color online). Left: Autocovariance function (ACF) of
the tube radius profile averaged over 24, 37, 18, 13, and 9
filaments for c ¼ 0:2, 0.4, 0.6, 0.8, and 1:0 mg=ml, respectively
(symbols as in Fig. 3, inset), with the abscissas rescaled by their
initial slope 	�1 (obtained by quadratic extrapolation for a
varying fit interval s ¼ s0; . . . ; smax, smax ! 0 [21]). Because
of the finite optical resolution of the microscope, data points
below s0 ¼ 230 nm were not considered. Right: 	 versus actin
concentration c with best power-law fit (exponent �0:44�
0:09).
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