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We investigate Dirac fermions in the antiferromagnetic metallic state of iron-based superconductors.

Deriving an effective Hamiltonian for Dirac fermions, we reveal that there exist two Dirac cones carrying

the same chirality, contrary to graphene, compensated by a Fermi surface with a quadratic energy

dispersion as a consequence of a nontrivial topological property inherent in the band structure. We also

find that the presence of the Dirac fermions gives the difference of sign-change temperatures between the

Hall coefficient and the thermopower. This is consistent with available experimental data.
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The iron-pnictide high-temperature superconductors
have attracted much attention since their discovery [1]. In
this multiorbital system, the Fermi surfaces consist of
electron and hole Fermi surfaces of comparable sizes.
This multiband structure leads to rich physics, presumably
including superconductivity with high-transition tempera-
tures [2,3]. In the parent antiferromagnetic phase, the
system remains metallic [4,5], contrary to the simple anti-
ferromagnetic state in single band systems. This parent
antiferromagnetic state possesses nontrivial topological
properties; consequently, a Dirac fermion energy spectrum
close to the Fermi energy appears [6]. In this Letter, we
explore the Dirac fermion physics in this system.

Dirac fermions in condensed matter systems were first
highlighted by the observation of the anomalous integer
quantum Hall effect in graphene [7,8]. In graphene, the
energy spectrum is linear at the corners of the first
Brillouin zone, so that the electrons at low energies are
well described by the Dirac equation, with the speed of
light being replaced by the Fermi velocity [9]. Such a
unique energy band structure gives rise to several charac-
teristic transport properties [10].

In the iron-pnictide superconductors, a similar linear
spectrum was discussed by Ran et al. [6]. They pointed
out that hybridizations between the Fe 3d orbitals and the
pnictide ion 4p orbitals give rise to the band degeneracy
characterized by a nontrivial topology. Contrary to a con-
ventional spin density wave (SDW), there are gapless
nodal points along the Fermi surface. The topology here
is characterized by ‘‘vorticity’’ quantum number, which is
associated with the phase winding defined through a two-
component spinor wave function. The Fermi surfaces con-
nected by the SDW wave vector have a vorticity of zero
and a vorticity of two: This vorticity mismatch leads to a
nodal SDW, and creates Dirac cones near the Fermi energy.

In this Letter we shall derive the effective theory de-
scribing the Dirac fermions based on the five-band model
[3] with the SDWmean field analysis [6,11]. We reveal that
there exist two Dirac cones carrying the same chirality,

contrary to the Dirac fermions in graphene. This unusual
feature is due to the presence of another Fermi surface,
which does not have a linear spectrum but has chirality. We
demonstrate that the scattering rate difference between
Dirac fermions and conventional electrons leads to anoma-
lous temperature dependence of the transport coefficients
which are consistent with the experiment [12].
For the band structure calculation, we take the five-band

model

H 0 ¼
X
i;j

X
�;�

X
s

ðti�;j� þ �ij���"�Þdyi�sdj�s

¼ X
k;�;�;s

"��
k dyk�sdk�s; (1)

where dyj�s creates an electron with spin s on the �th

orbital at site j. The parameters ti�;j� and "� are given in

Ref. [3]. Following Ref. [6] we take the following interac-
tion form:

H I ¼ U
X
j;�

nj�"nj�# þ ðU� 2JÞ X
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nj�snj�s0
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where nj�s ¼ dyj�sd
y
j�s. The mean field Hamiltonian for

the SDW state reads

HMF ¼
X

k2RBZ;�;�;s

ðdyk�sd
y
kþQ;�sÞ½H ks���

dk�s
dkþQ;�s

� �
;

(3)

where Q ¼ ð�; 0Þ and the k summation is taken over the
reduced Brillouin zone. The matrix H ks is given by

½H ks��� ¼ "��
k �m��

SDW

�m
��
SDW "

��
kþQ

 !
; (4)
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where we take the plus (minus) sign for s ¼" ð#Þ. The mean
field order parameters m

��
SDW are determined by solving the

mean field equations in a self-consistent way. Figure 1
shows the electron band structure calculated in the SDW
state with U ¼ 1:2 eV and J ¼ 0:25 eV, with the zero
temperature magnetic moment 1:0�B, which is close to
the value observed by neutron scattering in BaFe2As2 [13].

In the SDW state, Dirac points appear near the Fermi
energy. Those Dirac points exist on the kx axis and, in some
parameter region, on the ky axis as well but not at the high

symmetric points in the Brillouin zone. Since the Dirac
points appearing on the ky axis are not protected by topol-

ogy [6], we focus on the Dirac points on the kx axis. These
Dirac points are stable as long as the magnetic moment is
less than 3�B.

In order to investigate the physical properties of
the Dirac fermions, we derive the effective Hamil-
tonian around the Dirac point following Ref. [14], in
which the Dirac fermions in the organic conductor
�-ðBEDT-TTFÞ2I3 were analyzed. The effective
Hamiltonian is used to determine chirality and the
Landau level structure of Dirac fermions.

First we expand the Hamiltonian H k around the Dirac
point kc, denoting k ¼ kc þ �k,

Hk ¼ H kc
þ @H kc

@kx
�kx þ

@H kc

@ky
�ky þ . . . : (5)

(The spin index is suppressed hereafter.) Next, noting that a
Dirac point is formed by two eigenstates, we construct the
effective 2� 2 Hamiltonian using those two eigenstates
denoted by jk;�i. The general form of the effective
Hamiltonian is [14]

H eff
�k ¼ X

�¼0;x;y;z

�k � v���; (6)

where � ¼ ð�x; �y; �zÞ are the Pauli matrices and �0 is

the unit matrix. (We set @ ¼ 1.) The parameters v� are

determined by the following equation with � ¼ x, y:

hk; sj @H kc

@k�
jk; s0i ¼ X

�¼0;x;y;z

v�
�ð��Þss0 : (7)

Figure 2(a) shows the energy band dispersion of the state
(shown in Fig. 1) along the kx axis. The Dirac points are at
kc ¼ ð�0:829; 0Þ. The positions of the Dirac points are
close to the values reported in angle resolved photoemis-
sion spectroscopy measurements [15]. The effective
Hamiltonian is given by

Hk ¼ ðEc � vx
0kxÞ�0 � ðvx

zkx�z þ vy
xky�xÞ; (8)

where Ec � EF ¼ �20 meV, vx
0=a ¼ 0:286 eV, vy

x=a ¼
0:229 eV, and vx

z=a ¼ 0:672 eV, with a the lattice con-
stant. The nonzero value of vx

0 implies that the Dirac cone

is tilted in the kx direction. As a result, we expect a strong
anisotropy in the Fermi velocity.
Now we discuss chirality associated with Dirac fermi-

ons. In Figs. 2(b) and 2(d) the vector nk � hk;þj�jk;þi
is shown around the two Dirac points. The vector field nk

shows a vortex configuration with vorticity of one. A
remarkable fact is that the two Dirac cones have the
same vorticity: The vector nk is rotated clockwise when
one goes around each Dirac point. In conventional Dirac
fermion systems, like graphene, two Dirac cones have the
opposite chirality by symmetry. The same is true for the
Dirac cones in�-ðBEDT-TTFÞ2I3. This unusual property is
understood by considering the chirality associated with the
hole band around the � point, as shown in Fig. 2(c).
Although the energy dispersion around the � point is
quadratic, and an energy gap lies between two relevant
bands, we can apply the above analysis in constructing the
effective Hamiltonian: In the quadratic dispersion case, the
parameters v� are linear functions with respect to kx or ky
with higher order corrections. Along the circle represented

by k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ 0:1, we find H k ¼ ak�0 þ bk�z þ

ck�x, with ak ¼ �0:508k2x � 0:475k2y, bk ¼ �0:191k2x þ
2:56k2y, and ck ¼ 2:80kxky. The winding is described by

the following vector: ðnx; nzÞ ¼ ðck; bkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k þ c2k

q
. As

shown in Fig. 2(c), the vector nk rotates counterclockwise

FIG. 1 (color online). Left panel: The crystal structure of
CaFe2As2. Middle panel: The electron band structure near the
Fermi energy in the SDW state. The unit cell is taken by the
square lattice formed by Fe atoms. Right panel: The magnifica-
tion of the band structure near the Dirac point indicated by the
circles in the left panel.
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FIG. 2 (color online). (a) The energy bands along the kx axis.
The dotted line represents the Fermi energy. Two Dirac points
are located at (�0:829, 0). The direction of the vector
nðkÞ ¼ ðnxðkÞ; nzðkÞÞ around (a) (�0:829, 0), (b) (0,0), and
(c) (0.829,0).
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twice when one goes around the � point. This chirality
exactly compensates the chirality of the two Dirac cones.
We note that the scattering between the two Dirac cones,
which is still under debate in graphene [16], is qualitatively
different from that in graphene because these Dirac cones
carry the same chirality. It is worth pointing out that this
chirality property is compatible with the interband Cooper
pairing between the hole band around the � point and the
Dirac cones.

Now we turn to the physical properties associated with
the Dirac fermions. One of the most significant effects
associated with Dirac fermion chirality is the suppression
of backward scattering [17]. As a consequence, the scat-
tering ratio is different between Dirac fermions and con-
ventional electrons. Reflecting this difference, some
transport coefficients clearly exhibit contributions from
Dirac fermions [18] even if the Dirac fermions are the
minor carrier [19].

We consider a phenomenological two-band model con-
sisting of a hole band, with a conventional energy spec-
trum, and an electron band, with the Dirac fermion energy
spectrum. The charge current is given by j ¼ �Eþ
�ð�rTÞ, where � and � are tensors computed by the
Jones-Zener solution of the Boltzmann equation [20].
The contribution from the Dirac fermions is denoted by

�ðeÞ and�ðeÞ, and that from the holes is denoted by�ðhÞ and
�ðhÞ. The sign change of the Hall coefficient RH ¼
�xy=ðBz�

2
xxÞ, with Bz the applied magnetic field in the z

direction, occurs at �ðeÞ
xy =�

ðhÞ
xy ¼ 1. On the other hand, the

sign change in the thermopower occurs when �ðeÞ
xx =�

ðhÞ
xx ¼

1. For the energy dispersions, we take "ðeÞk ¼ vk� "e and

"ðhÞk ¼ �k2=ð2mÞ þ "h, with energy levels �e and �h. At
finite temperatures, electrons may be scattered by phonons
and spin waves. Here we focus on temperatures lower than
the characteristic temperatures associated with those ex-
citations and assume constant scattering times, 	e;h. In
order to reduce the number of parameters, we setmv2=2 ¼
"e � "0. The difference between 	e and 	h is parametrized

by 	r � 	h=	e. In Figs. 3(a) and 3(b) we show
ffiffiffiffiffiffiffiffiffiffiffiffi
re=rh

p �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2h�

ðeÞ
xy =ð	2e�ðhÞ

xy Þ
q

and se=sh � 	h�
ðeÞ
xx =ð	e�ðhÞ

xx Þ for differ-
ent values of nr � ne=nh, with neðhÞ the electron (hole)

density. Whether there are sign changes or not depends on
	r and nr. (Note that nr is controlled by changing "h.) The

sign change occurs when 	r ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
re=rh

p
, se=sh. In general,

the sign change occurs at different temperatures for the
Hall coefficient and the thermopower because of their
different dependences on 	r.

We show the Seebeck coefficient, the Hall coefficient,
and the Nernst coefficient, � ¼ ð�xx�xy � �xy�xxÞ=
½Bzð�2

xx þ �2
xyÞ�, in Fig. 3(c) for 	r ¼ 0:45 and nr ¼

0:05. The result is consistent with the experiment reported
in Ref. [12], where similar sign changes were observed in
CaFe2As2. Note that we expect large contributions from
the Dirac fermions for the Nernst coefficient as well be-

cause the quantity is quadratically dependent on the scat-
tering time. We point out that a naive application of the
Jones-Zener solution to the SDW mean field state with the
same scattering time for all bands does not lead to these
temperature dependences even if we take into account the
temperature dependence of the order parameter. In
CaFe2As2, the energy dispersion in the kz direction may
not be negligible. Therefore, we assumed here a moderate
value for 	r. For systems with strong two dimensionality,
like the so-called 1111 system, we expect a small 	r. In
such a case Dirac fermions markedly contribute to the
transport coefficients.
If we assume a conventional energy dispersion for the

electron band, the temperature dependence of
ffiffiffiffiffiffiffiffiffiffiffiffi
re=rh

p
is

qualitatively different from the Dirac fermion case, as
shown in the inset in Fig. 3(a). In this case, the Hall
coefficient behaves qualitatively different from Fig. 3(c).
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FIG. 3 (color online). The temperature dependence of the

ratios
ffiffiffiffiffiffiffiffiffiffiffiffi
re=rh

p
(a) and se=sh (b) for different values of the density

ratio nr. (nr ¼ 1:0, 0.70, 0.45, 0.35, 0.25, 0.15, 0.10, 0.05 from
top to bottom.) The inset in (a) shows the temperature depen-

dence of
ffiffiffiffiffiffiffiffiffiffiffiffi
re=rh

p
for conventional energy dispersions. (nr ¼ 1:0,

0.45, 0.25, 0.10, 0.05 from top to bottom.) (c) The temperature
dependence of the Hall coefficient, the Seebeck coefficient, and
the Nernst coefficient, which are normalized by ð2�a2=jejÞ �
ð@v="0aÞ2, kB=jej, and ½kBa2=ð2�@Þ�ð@v="0aÞðv	D=aÞ, respec-
tively, with kB the Boltzmann constant.
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The Hall coefficient is positive at low temperatures, unlike
the Dirac fermion case.

A systematic change of these sign changes is expected
by controlling the electron density. In Fig. 4 we show the
doping dependence of the Dirac point and its position in
the Brillouin zone in the five-band SDW state. Both de-
crease monotonically by increasing electron density.
Interestingly, the Dirac point crosses the Fermi energy at
the hole doping side.

Now we propose an experiment to directly observe the
evidence of the Dirac fermions. In conventional electrons,
the Landau level energies are equally separated. By con-
trast, the Dirac fermion Landau level energies are not. For
the tilted Dirac cone (8), the Landau level energy spectrum
is given by [21]

En ¼ sgnðnÞ
ffiffiffiffiffiffiffiffiffiffi
vx
zv

y
x

q

‘B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3jnj

q
; (9)

with ‘B ¼ 1=
ffiffiffiffiffiffi
eB

p
the magnetic length and 
 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðvx
0=v

x
zÞ2

q
. This Dirac fermion Landau level structure

can be observed by scanning tunneling spectroscopy (STS)
measurements. At graphite surfaces under magnetic fields
a series of peaks in the tunnel spectra associated with
Landau quantization of the quasi-two-dimensional elec-
trons were observed [22,23]. The observed Landau levels
are in good agreement with those expected for a surface
layer, graphene. From our effective Hamiltonian, we eval-
uated that E1 ’ 10 meV at B ¼ 10 Twhile E1 ’ 130 meV
in graphene. Using STS, we expect that the Dirac fermion
Landau level structure should be observed in the parent
antiferromagnetic state.

To conclude, we have investigated the Dirac fermions in
the parent antiferromagnetic state of the iron-based super-
conductors. There exist two tilted Dirac cones with the

same chirality, contrary to the Dirac cones in graphene.
The sign changes observed experimentally in the thermo-
power and the Hall coefficient are consistently understood
from the Dirac fermion picture. We propose that the Dirac
fermion Landau level structure be observed by STS mea-
surements. Since the two Dirac cones carry the same
chirality, the intervalley scattering is qualitatively different
from ordinary Dirac fermion systems. Compared to gra-
phene, the valley splitting occurs in a different manner that
would be clarified in the magnetoresistance.
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FIG. 4 (color online). The electron density dependence of the
Dirac point and the Dirac point position in the Brillouin zone
denoted by (kx, 0). The inset shows the electron density depen-
dence of the magnetic moment.

PRL 105, 037203 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

037203-4

http://dx.doi.org/10.1021/ja800073m
http://dx.doi.org/10.1103/PhysRevLett.101.057003
http://dx.doi.org/10.1103/PhysRevLett.101.087004
http://dx.doi.org/10.1088/0953-8984/20/42/422203
http://dx.doi.org/10.1088/0953-8984/20/42/422203
http://dx.doi.org/10.1103/PhysRevB.80.064507
http://dx.doi.org/10.1103/PhysRevB.79.014505
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/PhysRevLett.103.247202
http://dx.doi.org/10.1103/PhysRevLett.103.247202
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevB.81.020510
http://dx.doi.org/10.1103/PhysRevLett.101.257003
http://dx.doi.org/10.1143/JPSJ.76.034711
http://dx.doi.org/10.1103/PhysRevLett.104.137001
http://dx.doi.org/10.1016/j.ssc.2007.02.046
http://dx.doi.org/10.1143/JPSJ.67.2857
http://dx.doi.org/10.1143/JPSJ.67.2857
http://dx.doi.org/10.1103/PhysRevB.80.224512
http://dx.doi.org/10.1103/PhysRevB.80.224512
http://dx.doi.org/10.1143/JPSJ.78.023704
http://dx.doi.org/10.1143/JPSJ.78.023704
http://dx.doi.org/10.1103/PhysRevLett.94.226403
http://dx.doi.org/10.1038/nphys653

