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We study interaction effects in topological insulators with strong spin-orbit coupling. We find that the
interplay of nontrivial topology and Coulomb repulsion induces a novel critical state on the surface of a
three-dimensional topological insulator. Remarkably, this interaction-induced criticality, characterized by
a universal value of conductivity, emerges without any adjustable parameters. Further, we predict a direct
quantum-spin-Hall transition in two dimensions that occurs via a similar critical state.
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Critical phenomena and quantum phase transitions are
paradigmatic concepts in modern condensed matter phys-
ics. The universality of critical phenomena has been
studied both in the area of strongly correlated systems
and in mesoscopics. A central example in the field of
mesoscopic physics is the localization-delocalization
(metal-insulator) quantum phase transition driven by dis-
order—the Anderson transition [1]. Although the notion of
localization appeared half a century ago, this field is still
full of surprising new developments. The most recent
arenas where novel peculiar localization phenomena have
been studied are graphene [2] and topological insulators
[3-7], i.e., bulk insulators with delocalized (topologically
protected) states on their surface.

It is now established that disordered electronic systems
can be classified into 10 symmetry classes [8] (for review
see Ref. [1]). The localization properties are determined by
the symmetry class and dimensionality of the system. The
critical behavior depends also on the underlying topology.
This is particularly relevant for topological insulators [3—
7,9—-11]. The famous example of a topological insulator
(TD) is a two-dimensional (2D) system on one of the
quantum Hall plateaus in the integer quantum Hall effect
(QHE) [12]. Such a system is characterized by an integer
(Chern number) which counts the edge states. The integer
QHE edge is thus a topologically protected one-
dimensional (1D) conductor realizing the group Z.

Another (Z,) class of TIs [3-5] can be realized in
systems with strong spin-orbit (SO) interaction and with-
out magnetic field—and was discovered in HgTe/HgCdTe
structures in Ref. [6] (see also Ref. [9]). Such systems were
found to possess two distinct insulating phases, both hav-
ing a gap in the bulk electron spectrum but differing by
edge properties. While the normal insulating phase has no
edge states, the topologically nontrivial insulator is char-
acterized by a pair of mutually time-reversed delocalized
edge modes penetrating the bulk gap. Such a state shows
the quantum-spin-Hall (QSH) effect which was theoreti-
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cally predicted in a model system of graphene with SO
coupling [3,13,14]. The transition between the two topo-
logically nonequivalent phases (ordinary and QSH insula-
tors) is driven by inverting the band gap [4].

A related three-dimensional (3D) Z, TI was discovered
in Ref. [7] where crystals of Bi;_,Sb, were investigated.
The boundary in this case gives rise to a 2D topologically
protected metal. Similarly to 2D TIs, the inversion of the
3D band gap induces an odd number of the surface 2D
modes [15]. These states in BiSb have been studied ex-
perimentally in Refs. [7,10]. Other examples of 3D TIs
include BiTe and BiSe systems [11]. We overview the
classification [16] of TIs in the supporting material [17].

In this Letter, we consider the effect of interactions on
Z, TIs of the symplectic symmetry class, characteristic to
systems with strong SO interaction. We predict a novel
critical state which emerges due to the interplay of non-
trivial topology and the Coulomb interaction.

Let us start with reviewing the localization properties of
2D systems of symplectic symmetry class AIl without
Coulomb interaction. In conventional SO systems (e.g.,
semiconductors with SO scattering), there are two phases:
metal and insulator with the Anderson transition between
them [Fig. 1(a)]. A qualitatively different situation occurs
in a single species of massless Dirac fermions in a random
scalar potential. This system also belongs to the symplectic
symmetry class but its metallic phase is “‘topologically
protected” whatever disorder strength. In terms of scaling,
this means a positive beta function, B(g) = dg/dInL >0,
for small dimensionless (in units e”>/h) conductivity g
[Fig. 1(b)]. This topologically protected state has been
recently predicted for disordered graphene with no spin
and no valley mixing [18,19] (see also Ref. [17] for an
alternative proof). The absence of localization in this
model has been confirmed in numerical simulations [20].
The scaling function has been found in Ref. [20] to be
strictly positive, implying a flow towards the ‘““supermetal”
fixed point [21] [see Fig. 1(b)]. While a genuine single
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FIG. 1 (color online). Schematic scaling functions for the
conductivity of 2D disordered systems of symplectic symmetry
class. The plotted beta functions B(g) = dg/dInL determine the
flow of the dimensionless conductivity g with increasing system
size L (as indicated by the arrows). The upper two panels show
the beta functions for ordinary SO systems which are not
topologically protected; the lower two panels demonstrate the
scaling for topologically protected Dirac fermions (left: no
interaction; right: Coulomb interaction included). In the inter-
acting case the number of independent flavors is N = 1.

Dirac fermions

Dirac fermion cannot be realized in a truly 2D microscopic
theory because of the “fermion doubling” problem, it
emerges on the surface of a 3D TI [15].

The 3D TIs are characterized by the inverted sign of the
gap (band inversion). This generates the surface states, as
was pointed out in Ref. [22]. The effective 2D surface
Hamiltonian has a Rashba form (see the derivation in
Ref. [17]) and describes a single species of 2D massless
Dirac particles (cf. Ref. [22(c)]). It is thus analogous to the
Hamiltonian of graphene with just a single valley. In the
absence of interaction, the conductivity of the disordered
surface of a 3D TI therefore scales to infinity with increas-
ing the system size [Fig. 1(b)].

Let us now “turn on” the Coulomb interaction between
electrons. Since a TI is characterized by the presence of
propagating surface modes, its robustness with respect to
interactions means that interactions do not localize the
boundary states. At this point it is worth recalling the
celebrated example of a 2D TI, the QHE insulator, in which
the Coulomb interaction cannot destroy the chiral 1D
modes on the edge of a 2D sample. Furthermore, two
consequent QHE TTs (plateaus) are separated by a delocal-
ized (critical) 2D state. Since the TI phases are robust, the
interaction is not capable of localizing electrons in this 2D
state [23]: a delocalized bulk state is necessary for chang-
ing the number of the edge modes at the QHE transition.
The observation of the QHE thus provides an experimental
proof of the robustness of TIs.

Assuming that the interaction (characterized by the di-
mensionless parameter r, ~ e?/hvy) is not too strong,
delocalized states in Z, TIs are not destroyed by the
interaction either. Arguments in favor of the stability of
Z, TIs with respect to interactions were given in
Refs. [3,5,24]. Below we demonstrate the Z, topological

order and discuss its implications in 2D and 3D interacting
systems in the presence of disorder.

We first consider the interacting massless Dirac elec-
trons on the surface of a 3D TI. Without interaction, the
surface states are delocalized in the presence of arbitrarily
strong potential disorder. In the supporting material [17]
we demonstrate that a not too strong interaction cannot
fully localize the surface states. This is achieved by con-
sidering the TT of a hollow cylinder geometry threaded by
half of the magnetic flux quantum. Our 2D problem then
reduces to the quasi-1D model with an odd number of
channels. Full 2D localization would contradict the known
results on the absence of localization in such quasi-1D
symplectic wires [25]. Since delocalization in quasi-1D
geometry survives in the presence of interaction, this is
also true for the 2D interacting Dirac electrons on the
surface of a 3D TI. This consideration is valid when the
interaction does not lead to a spontaneous symmetry break-
ing, which is true for not too strong interaction r; < 1 [17].

Can the topologically protected 2D state be a supermetal
(g — o) as in the noninteracting case? To answer this
question we employ the perturbative renormalization
group applicable for large conductivity g > 1. It is well
known that in a 2D diffusive system the interaction leads to
logarithmic corrections to the conductivity [26]. These
corrections (together with the interference-induced ones)
can be summed up with the use of renormalization group
technique [27-31]. The one-loop equation for renormal-
ization of the conductivity in the symplectic class with
Coulomb interaction has the following form:

,3(8)=—n=—_1+(N2_1).7:y (D

where N is the number of degenerate species (“‘flavors”:
spin, isospin, ...) and L is the system size [17].

The first term, N/2, describes the effect of weak anti-
localization due to disorder (this term exists also in the
absence of interaction) for N parallel conductors. The
second term, —1, is induced by the Coulomb interaction
in the singlet channel and has a localizing effect: it sup-
presses the conductivity. The singlet interaction term does
not depend on N since all flavors are involved in the
screening of the Coulomb interaction [26]. The effective
strength of the singlet interaction is therefore suppressed
by the factor 1/N which compensates the number of
parallel channels in the conductivity correction. The last
term on the right-hand side of Eq. (1) is due to the inter-
action in the multiplet (in the flavor space) channel. This
term yields a positive (antilocalizing) correction to the
conductivity. The multiplet interaction parameter F is
itself subject to renormalization [27].

In the degenerate case N > 1 (as, for example, in gra-
phene with N = 4), the beta function (1) is positive corre-
sponding to the supermetal phase. The situation is
essentially different for 2D states on the surface of a 3D
Z, TI where we have a symplectic system with N = 1.
According to Eq. (1), the negative interaction-induced term
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in B(g) now dominates while the multiplet term is absent.
Therefore, for g > 1 the conductance decreases upon
renormalization. This means that due to interaction the
supermetal fixed point becomes repulsive.

Thus, on one hand, at g >> 1 we encounter the tendency
to localization due to the interaction. This follows from
Eq. (1) which yields B(g) <0, i.e., (i) scaling towards
smaller g on the side of large g. On the other hand, the
states on the surface of the TI are topologically protected
from the localization (for the interacting system, see the
proof in Ref. [17]). This topological protection yields
B(g) >0 at small g, i.e., (ii) scaling towards higher g on
the side of small g. The combination of (i) and (ii) leads
unavoidably to the conclusion that at some point (g ~ 1)
the beta function should cross zero [see Fig. 1(d)]. As a
result, a critical point emerges due to the combined effect
of interaction and topology [32]. We emphasize that this
statement does not require the knowledge of the precise
form of the beta function in the critical region. In other
words, if the system can flow neither towards a supermetal
(g — ) nor to an insulator (g — 0), it must flow to an
intermediate fixed point (g ~ 1).

It is illuminating to draw an analogy with the two-
channel symmetric Kondo model, where both weak- and
strong-coupling fixed points are repulsive [33], implying a
stable fixed point at intermediate coupling. Critical phases
of interacting systems governed by intermediate-coupling
fixed points have been also found, e.g., in other impurity
models [34] and in spin liquids [35].

The topological protection reverses the sign of the S8
function at g ~ 1, similarly to the ordinary QHE [23]. This
is encoded in the topological # = 7 term in the effective
low-energy theory—the interacting symplectic sigma
model. However, our type of criticality differs from the
QHE criticality which exists already without interactions.
In our case, in the absence of the critical state in a non-
interacting model, the criticality is inevitably established in
the realistic interacting systems. This novel interaction-
induced criticality is the major result of our Letter. Re-
markably, the critical state emerges on the surface of a 3D
TI without any adjustable parameters. This phenomenon
can be thus called “‘self-organized quantum criticality.”

Let us now return to 2D Z, TIs. Without interaction,
disorder was found to induce a metallic phase separating
the two (QSH and ordinary) insulators [36]. The transition
[1] between metal and any of the two insulators occurs at
the critical value of conductivity g = ¢g* = 1.4; both tran-
sitions are believed to belong to the same universality
class. For g < g* all bulk states are eventually localized
in the limit of large system, while for g > g* the weak
antilocalization specific to SO systems leads to the “‘super-
metallic” state, g — o00. The schematic phase diagram for
the noninteracting case is shown in Fig. 2(a).

What would change in this phase diagram when inter-
action is taken into account? The answer follows from
Eq. (1). The 2D disordered QSH system contains only a
single flavor, N = 1. Indeed, the SO coupling breaks the

spin-rotational symmetry, whereas valleys are mixed by
disorder. As a result, the supermetal does not survive in the
presence of Coulomb interaction: at g >> 1 the interaction-
induced localization wins. This is analogous to the case of
the surface of a 3D TI discussed above.

The edge of a 2D TI is protected from the full localiza-
tion, as was discussed already in the pioneering works by
Kane and Mele [3]. In the presence of interaction, the
counterpropagating edge modes constitute the Luttinger
liquid with disorder-induced backscattering forbidden by
the time-reversal symmetry. This means that the topologi-
cal distinction between the two insulating phases (ordinary
and QSH insulator) is not destroyed by a not too strong
interaction (see [17]), whereas the supermetallic phase
separating them disappears. Therefore we conclude that
the transition between two insulators occurs through an
interaction-induced critical state [see Fig. 2(b)].

Existence of the proposed critical states can be verified
in transport experiments on semiconductor structures with
possible gap inversion. Specifically, measurements of sur-
face transport in a 3D TI should reveal universal conduc-
tivity ~e?/h as well as critical power-law dependence of
two-point conductance on the distance between contacts.
For 2D HgTe-based QSH structures we predict a quantum
phase transition (bearing analogy with the QHE transition)
with changing width of the quantum well, which can be
observed in conductance measurements. The transition
should possess critical properties described above, and
the critical region should shrink with decreasing tempera-
ture according to a power law.

In the above, we have considered the experimentally
relevant case of long-range Coulomb repulsion. The topo-
logical protection is not sensitive to the nature of the
interaction, whereas the flow at high g is. For short-range
interaction, the unity in the singlet term of Eq. (1) is
replaced by the interaction constant y, < 1, which itself
decreases upon renormalization. Therefore, for sufficiently
weak short-range interaction the supermetallic fixed point
remains stable and the critical state does not develop [17].
For the strong short-range interaction, the situation is more
intricate, as, in contrast to the Coulomb case, the analysis
requires the details of scaling flows at intermediate g ~ 1.

In conclusion, we have found that in the two types of
systems with strong SO coupling the Coulomb interaction
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disorder
disorder
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FIG. 2 (color online). Phase diagrams of a disordered 2D
system demonstrating the QSH effect. (a) Noninteracting case.
(b) Coulomb interaction included. Interaction “kills” the super-
metal: the two insulators are separated by the critical line.
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induces novel 2D critical states. This happens, first, at the
boundary of 3D TIs and, second, in the bulk of 2D QSH
systems, where the critical state separates the two topo-
logically distinct insulating phases. In the first case the
system can be described by a 2D interacting symplectic
sigma model with the Z, topological term. The two critical
states have much in common: (i) symplectic symmetry,
(i) Z, topological protection, (iii) interaction-induced
criticality, and (iv) conductivity of order unity (probably
universal). This suggests that the corresponding fixed
points might be equivalent. The difference between the
3D and 2D cases is that on the surface of 3D TIs the
criticality is ‘“‘self-organized”—i.e., it emerges without
any adjustable parameters—whereas in 2D TIs it requires
fine-tuning of the parameter that controls the QSH transi-
tion. We propose transport experiments that can verify our
prediction of novel quantum critical states.
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