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Here we report from our theoretical studies that, in biased bilayer graphene, one can induce phase

transitions from an incompressible fractional quantum Hall state to a compressible state by tuning the

band gap at a given electron density. The nature of such phase transitions is different for weak and strong

interlayer coupling. Although for strong coupling more levels interact there is a lesser number of

transitions than for the weak coupling case. The intriguing scenario of tunable phase transitions in the

fractional quantum Hall states is unique to bilayer graphene and has never before existed in conventional

semiconductor systems.
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The unconventional quantum Hall effect in monolayer
graphene, whose experimental observation [1] unleashed
quite unprecedented interest in this system [2], reflects the
unique behavior of massless Dirac fermions in a magnetic
field [3,4]. In bilayer graphene this effect confirms the
presence of massive chiral quasiparticles [5]. An important
characteristic of bilayer graphene is that it is a semicon-
ductor with a tunable band gap between the valence and
conduction bands [6]. This modifies the Landau level
spectrum and influences the role of long-range Coulomb
interactions [7]. Here we report that the fractional quantum
Hall effect (FQHE), a distinct signature of interacting
electrons in the system [8,9], is very sensitive to the
interlayer coupling strength and the bias voltage. We pro-
pose that by tuning the bias voltage one can induce phase
transitions from an incompressible state to a compressible
state at a given gate voltage. The bilayer graphene system
shows quite different properties for weak and strong inter-
layer coupling. For a weak coupling the energy spectrum as
a function of bias voltage shows a set of anticrossings,
resulting in transitions from the FQHE state to a compress-
ible state. At strong coupling there is a strong interaction
between many energy levels, which finally results in only a
few phase transitions. This interesting scenario of tunable
phase transitions in the FQH states is unique to bilayer
graphene. In conventional semiconductor systems, the type
of phase transitions discussed below was never reported.
The FQHE in monolayer graphene was in fact, studied
theoretically by us [10] and subsequent experiments con-
firmed the existence of that effect in suspended monolayer
graphene samples [11]. No such studies have been reported
on bilayer graphene.

We assume that the bilayer graphene consists of two
coupled graphene layers with the Bernal stacking arrange-
ment. Our main concern then is the coupling between
atoms of sublattice A of the lower layer and atoms of
sublattice B0 of the upper layer. The single-particle levels

have twofold spin degeneracy and twofold valley degen-
eracy, which can be lifted in the many-particle systems at
relatively large magnetic fields [12]. The valley degeneracy
is also lifted under an applied bias voltage [5]. Considering
only one spin direction, we describe the state of the system
in terms of the four-component spinor ðc A; c B; c B0 ; c A0 ÞT
for valley K and ðc B0 ; c A0 ; c A; c BÞT for valley K0. Here
subindices A, B and A0, B0 correspond to lower and upper
layers, respectively. The strength of interlayer coupling is
described in terms of the interlayer hopping integral, t. In a
biased bilayer graphene the bias potential is introduced as
the potential difference, �U, between the upper and lower
layers. The Hamiltonian of the biased bilayer system in a
perpendicular magnetic field then takes the form [5]

H ¼ �

�U=2 vF�þ �t 0
vF�� �U=2 0 0
�t 0 ��U=2 vF��
0 0 vF�þ ��U=2

0
BBB@

1
CCCA; (1)

where �� ¼ �x � i�y, ~� ¼ ~pþ e ~A=c, ~p is the two-

dimensional electron momentum, ~A is the vector potential,
vF � 106 m=s is the Fermi velocity, and � ¼ þ (K valley)
or � (K0 valley).
In a perpendicular magnetic field the Hamiltonian (1)

generates a discrete Landau level energy spectrum. The
corresponding eigenfunctions can be expressed in terms of
the conventional nonrelativistic Landau functions. The
electron states in sublattices A and A0 are written in terms
of the nth Landau functions, while the electron states in
sublattices B and B0 are described by the jn� 1j and nþ 1
Landau functions, respectively. Therefore the Landau
states in bilayer graphene can be described as a mixture
of n, nþ 1, and n� 1 nonrelativistic Landau functions
belonging to different sublattices [6]. This mixture, for a
given value of n, results in four different Landau levels.
The Landau level energies, " corresponding to the index n
can be found from the following equation [6]
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½ð"þ ��Þ2 � 2ðnþ 1Þ�½ð"� ��Þ2 � 2n� ¼ ð"2 � �2Þt2;
(2)

where � ¼ �U=2 and all energies are expressed in units of

@vF=‘0. Here ‘0 ¼ ð@=eBÞ1=2 is the magnetic length.
We now introduce a labeling scheme for Landau levels

in bilayer graphene. From Eq. (2), we see that for each
value of n (¼ 0; 1; 2; . . . ) and in each valley there are four
solutions, i.e., four Landau levels. Usually, the two lower
Landau levels have negative energies and the two upper
Landau levels have positive energies. Then each of the four

Landau levels can be labeled as nð�Þi , where i ¼ �2,�1, 1,
2 is the label of the Landau level corresponding to the
solution of Eq. (2) for a given value of n in the ascending
order.

For a partially occupied Landau level the properties of
the system, e.g., the ground state and excitations, are
completely determined by the interelectron interactions,
which can be expressed by Haldane’s pseudopotentials,
Vm, [13] (energies of two electrons with relative angular
momentum m). In a graphene bilayer the Haldane pseudo-
potentials in a Landau level with index n and the energy "
have the form

VðnÞ
m ¼

Z 1

0

dq

2�
qVðqÞ½Fn;"ðqÞ�2Lmðq2Þe�q2 ; (3)

where LmðxÞ are the Laguerre polynomials, VðqÞ ¼
2�e2=ð�‘0qÞ is the Coulomb interaction in the momentum
space, � is the dielectric constant, and Fn;"ðqÞ are the

corresponding form factors

Fn;"ðqÞ ¼ 1

dn

�
ð1þ f2nÞLnðq22 Þ þ

2n

ð"� ��Þ2 Ln�1ðq22 Þ

þ 2ðnþ 1Þ
ð"þ ��Þ2 f

2
nLnþ1ðq22 Þ

�
; (4)

where fn ¼ ð"���Þ2�2n
tð"���Þ and dn ¼ 1þ f2n þ 2n

ð"���Þ2 þ
2ðnþ1Þ
ð"þ��Þ2 f

2
n.

The form factors of bilayer graphene [Eq. (4)] are
clearly different from the corresponding ones for a mono-
layer graphene. In the latter case, the form factor of the n ¼
0 Landau level is the same as that of conventional non-
relativistic electrons [10,14], F0ðqÞ ¼ L0. The form factors
of higher Landau levels are determined by the mixture of
Ln and Lnþ1 terms. In bilayer graphene the form factors of
the n ¼ 0 Landau level are mixtures of the L0 and L1 terms
and are different from that in the nonrelativistic case. There
is one special Landau level in bilayer graphene with index
n ¼ 0, whose properties are completely identical to that of
the nonrelativistic n ¼ 0 Landau level. It is clear from
Eq. (2) that for n ¼ 0 there is a Landau level with energy
� ¼ ��. This energy does not depend on the coupling
between the layers, t. The form factor of this Landau level
is exactly equal to the form factor of a nonrelativistic
system of the n ¼ 0 Landau level, Fn¼0;�¼�� ¼ L0.

Therefore, all many-body properties of a bilayer system

in the n ¼ 0, � ¼ �� Landau level are completely identi-
cal to those of a nonrelativistic conventional system in the
n ¼ 0 Landau level.
For Landau levels with higher indices, the form factor is

a mixture of three different functions, Ln, Ln�1, and Lnþ1.
Therefore, in general, the strength of interelectron inter-
actions in bilayer graphene is strongly modified as com-
pared to its value in monolayer graphene. To address the
effects of these modifications on the properties of the
many-electron system in bilayer graphene we investigate
fractional filling factors corresponding to the FQHE [8].
We treat the many-electron system at various fractional
filling factors numerically within the spherical geometry

[10,13]. The radius of our sphere is R ¼ ffiffiffi
S

p
‘0, where 2S is

the number of magnetic fluxes through the sphere in units
of the flux quanta. The single-electron states are charac-
terized by the angular momentum, S, and its z component,
Sz. For the many-electron system the corresponding states
are classified by the total angular momentum L and its z
component, while the energy of the state depends only on
L [15]. A given fractional filling of the Landau level is
determined by a special relation between the number of
electrons N and the radius of the sphere R. For example,
the 1

3 -FQHE state is realized at S ¼ ð32ÞðN � 1Þ, while the
2
5 -FQHE state corresponds to the relation S ¼ ð54ÞN � 2.

With the Haldane pseudopotentials [Eq. (3)], we determine
the interaction Hamiltonian matrix [15] and then calculate
a few lowest eigenvalues and eigenvectors of this matrix.
The FQHE states are obtained when the ground state of the
system is an incompressible liquid, the energy spectrum of
which has a finite many-body gap [8,9].
We begin with the celebrated 1

3 -FQHE [9], correspond-

ing to the filling factor � ¼ 1
3 . The behavior of the Landau

level spectra as a function of the bias voltage and for
different values of t are displayed in Fig. 1 (only the
Landau levels with positive energies are shown). A similar
behavior is valid for other FQHE filling factors, e.g., for
� ¼ 2

5 [16]. Figure 1 clearly illustrates that the FQHE can

be observed in all n ¼ 0 Landau levels with the strongest
FQHE being in the second n ¼ 0 Landau levels of both

valleys, i.e., 0ðþÞ
2 and 0ð�Þ

2 .

We found an interesting behavior in the n ¼ 1 Landau
levels. There are four such levels with positive energy, two
per valley. The FQHE in these levels shows different
properties depending on the strength of t. For all parame-
ters of the system there is no FQHE in the Landau level

1ð�Þ
2 . At small values of t, t & 150 meV, [Fig. 1(a)] the
system clearly shows few anticrossings accompanied by
the transitions from the FQHE incompressible state to a
state without the FQHE. There is one such transition for

levels 1ðþÞ
2 and 1ð�Þ

1 , but there are two transitions in level

1ðþÞ
1 , corresponding to two anticrossings in this level. Thus,

in level 1ðþÞ
1 and small �U, the FQHE is present but

disappears at larger values of �U. It reappears at very
large values of �Uð� 400 meVÞ. With increasing t the
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two anticrossings in level 1ðþÞ
1 merge [see Fig. 1(b)] and

finally disappear [Fig. 1(c)]. At large values of t, t >
150 meV, there are only two anticrossings [Fig. 1(c)] in

1ð�Þ
1 and 1ðþÞ

2 Landau levels. At such large values of t, the
anticrossings cannot be considered as an interaction be-
tween two ‘‘crossing’’ levels, but as a result of strong
interaction between all (four) levels of the two layers of
bilayer graphene. It is important that such strong interac-
tion between the levels does not destroy the FQHE, but
shows well-defined regions with strong FQHE. For weak
coupling between graphene monolayers, i.e., for a small t,
transitions from the 1

3 -FQHE state to a non-FQHE state can

be understood in terms of the anticrossing of n ¼ 1 and
n ¼ 2 Landau levels of the monolayers. For monolayers,
the FQHE can be observed only in the n ¼ 0 and 1 Landau
levels but not for n ¼ 2 [10]. The levels without the FQHE
in Fig. 1(c) then correspond to n ¼ 2 of one of the mono-
layers. For large t, i.e., for strong coupling, such a simple
description is however inadequate. The properties of the
n ¼ 1 levels have important implications for possible ex-
perimental observations of this unique behavior [Fig. 1(a)].

(i) By applying a gate voltage the electron density can be
tuned so that the first four Landau levels are completely

occupied and the next Landau level is partially occupied
with the FQHE filling factor, for example, � ¼ 1

3 .

Following Fig. 1(a), this means that the 0ðþÞ
�1 , 0

ðþÞ
1 , 1ð�Þ

1 ,

0ðþÞ
2 Landau levels are fully occupied, while the 1ðþÞ

1

Landau level has a filling factor 1
3 . Then, by varying �U

from a small value, e.g., 10 meV, to a larger value, e.g.,
200 meV, one can observe the disappearance of the FQHE
[line (i) in Fig. 1(a)].
(ii) The bias voltage is kept fixed at a large value, e.g.,

�U ¼ 300 meV. Then by varying the gate voltage and
thus increasing the electron density, one can observe the
disappearance and reappearance of the 1=3-FQHE in
higher Landau levels [line (ii) in Fig. 1(a)], when the filling
factors of the corresponding Landau levels are 1=3.
The collapse of the FQHE gap corresponding to the

appearance of anticrossing of the n ¼ 1 Landau levels, is
illustrated in Fig. 2. The FQHE gap has a monotonic
dependence on the bias voltage. In the anticrossing re-
gion the gap disappears for the lower n ¼ 1 Landau level
[Fig. 2(a)] and reappears for the higher n ¼ 1 Landau level
[Fig. 2(b)]. The evolution of the energy spectra of the
incompressible liquid is found to be similar for other filling
factors (such as � ¼ 2

5 [16]). This behavior was never

before observed in the FQHE of conventional two-
dimensional electron systems.
The strength of the FQHE, i.e., the magnitude of the

excitation gap, depends on the bias voltage and the inter-
layer hopping integral. In Fig. 3, this dependence is shown
for 13 -FQHE in different Landau levels as a function of t. In

accordance with the properties of Haldane pseudopoten-

tials, the excitation gap of the 0ðþÞ
1 Landau levels does not

depend on the bias voltage and on the interlayer hopping
integral. The corresponding gap remains constant and is
equal to the gap of the FQHE in a single layer of graphene
in the n ¼ 0 Landau level. For t ¼ 0 the two layers of
graphene are decoupled and the bilayer system becomes
identical to a monolayer with additional double degener-
acy. This property is clearly seen in Fig. 3, where for t ¼ 0
there are only two doubly degenerate FQHE gaps,

FIG. 2 (color online). Low-energy excitation spectra of the
1
3 -FQHE states (eight electrons) in the Landau levels (a) 1ðþÞ

ð2Þ ,
and (b) 1ðþÞ

ð1Þ , shown for different values of the bias potential (the

numbers next to the lines are the values of �U in meV). The
system is fully spin polarized. The interlayer hopping integral is
set to 30 meVand the magnetic field is 15 Tesla. The flux quanta
is 2S ¼ 21. The solid dot at L ¼ 0 depicts the ground state. The
energy unit is "c ¼ e2=�‘0.

FIG. 1 (color online). A few lowest Landau levels of the
conduction band (for two valleys) as a function of the bias
potential, �U, for different values of interlayer coupling:
(a) t ¼ 30 meV, (b) t ¼ 150 meV, and (c) t ¼ 300 meV, and
a magnetic field of 15 Tesla. The numbers next to the curves
denote the corresponding Landau levels. The Landau levels
where the 1

3 -FQHE can be observed are drawn as blue (dark

gray) and green (light gray) filled dots. The green (light gray)
dots correspond to the Landau levels where the FQHE states are
identical to that of a monolayer of graphene. The red (medium
gray) dots represent Landau levels with weak 1

3 -FQHE and the

open dots for those where the FQHE is absent. In (a), the dashed
lines labeled by (i) and (ii) illustrate two situations: (i) under a
constant gate voltage and variable bias potential; (ii) under a
constant bias potential and variable gate voltage.
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corresponding to n ¼ 0 and n ¼ 1 single layer Landau
levels.

At the zero bias voltage the system has twofold valley
degeneracy, which is lifted at finite values of �U. At a
small bias voltage, �U ¼ 10 meV, the levels belonging to
two valleys are almost degenerate, which results in almost
the same FQHE gaps of the corresponding levels. At the

same time the FQHE gaps of 0ðþÞ
1 and 0ð�Þ

1 levels, which are

degenerate at the zero bias voltage, are different. The
origin of these levels is the following: At the zero bias
voltage there is a fourfold degenerate Landau level with

zero energy (0ðþÞ
1 , 0ð�Þ

1 , 0ðþÞ
�1 , and 0ð�Þ

�1 ). At a finite bias

voltage, two of the levels have positive energies (shown in
Fig. 1) and the other two levels have negative energies. At
small values of �U, the wave functions corresponding to

the levels 0ðþÞ
1 and 0ðþÞ

�1 of valley K have the form (0, 0, 0,

�0) and ð�0; 0; 0; ðt=21=2Þ�1Þ, respectively. Here �n are
nth ‘‘nonrelativistic’’ Landau functions and t is in units of
@vF=‘0. The corresponding form factors FðqÞ, are L0 for

level 0ðþÞ
1 and L0þðt2=2ÞL1

1þt2=2
for level 0ð�Þ

1 . Although the ener-

gies of these levels are almost the same the form factors
and hence the gaps are quite different. In Fig. 3(a) this
difference is clearly visible. The dependence of the gap of

the FQHE of level 0ð�Þ
1 on parameter t is nonmonotonic. At

t ¼ 0 the form factor of level 0ð�Þ
1 is L0 and the FQHE gap

is exactly equal to the FQHE gap in the n ¼ 0 Landau level

of a single graphene layer. At t ¼ 21=2@vF=‘0 the form

factor is L0þL1

2 and the FQHE gap is equal to that in the n ¼
1 Landau level of a single graphene layer. This point
corresponds to the maximum in Fig. 3(a). At a large bias
voltage, �U ¼ 300 meV [Fig. 3(b)], the FQHE gaps show
mainly monotonic dependence on the hopping integral.

The FQHE gaps of the levels 0ðþÞ
1 and 0ð�Þ

1 , which were

quite different in Fig. 3(a), are now close. There is also
disappearance of the FQHE in some n ¼ 1 Landau levels,
which corresponds to the anticrossing behavior in Fig. 1.
Similar results are also found for the filling factor � ¼ 2

5

(i.e., FQHE $ non-FQHE transitions occur at the same
Landau levels and at similar values of �U) [16].
To summarize, we have clearly demonstrated that bi-

layer graphene in a strong perpendicular magnetic field
reveals some unique properties, which could allow novel
transitions from the FQHE state to a vanishing FQHE state.
These transitions occur within the same Landau level by
varying the bias voltage, i.e, the potential difference be-
tween the layers. Similarly, we have shown that our work
on bilayer graphene also results in new physics: The tran-
sitions FQHE $ zero-FQHE, which for weak interlayer
coupling can be explained as the result of anticrossing of
two levels, also persists in the limit of strong coupling,
where all levels are strongly coupled. We have established
here that there is a fundamental difference between the two
regimes of weak and strong coupling in bilayer graphene.
The boundary between the two regions is determined by
the dimensionless parameter ½t=ð@vF=‘0Þ� � 1:5.
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