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We present a microscopic theory of the anomalous Hall effect (AHE) in metallic multiband ferro-
magnets, which accounts for all scattering-independent contributions, i.e., both the intrinsic and the so-
called side jump. For a model of Gaussian disorder, the AHE is expressed solely in terms of the material’s
electronic band structure. Our theory handles systematically the interband-scattering coherence effects.
We demonstrate the method in the 2D Rashba and 3D ferromagnetic (IILMn)V semiconductor models.
Our formalism is directly amenable to ab initio treatments for a wide range of ferromagnetic metals.
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Introduction.—While the anomalous Hall effect (AHE)
has attracted generous attention from the physics commun-
ity starting with the work by Karplus and Luttinger [1], its
full understanding remains incomplete [2]. Contributions
to the AHE in ferromagnetic metals can be separated
according to the dependence on the quasiparticle transport
lifetime 7, e.g., o4p(7) = 0'5?1)1 + ayo,,(7) + - -+, where
0'1(40}, is the scattering-independent contribution, and
apo,. (1), usually termed skew scattering, is linear in 7
in the Drude limit (i.e., Twr >> 1, where hwp is the Fermi

energy). The scattering-independent term 0'531 is usually

further separated into the intrinsic contribution (IC) o'ft,

and the side-jump contribution (SJC) o', = ¢}, — ot .
o' is defined as the extrapolation of the ac Hall conduc-
tivity to zero frequency in a clean system, with the limit
771 — 0 taken before @ — 0 [2]. The IC has been shown
to be linked to the Berry phase of the spin-orbit (SO)
coupled Bloch electrons [3]. It is the most directly calcu-
lable contribution to the AHE in ferromagnetic semicon-
ductors, transition metals, and complex oxides [4,5].

A wide range of SO coupled ferromagnetic metals ex-
hibit scattering-independent 0'201)1 in the 045 signal with a
sizable deviation from the calculated o'l [2,4,5], which
implies substantial SJC. Although an experimental separa-
tion of IC and SJC has been suggested by studying an
interplay of different kinds of disorder (e.g., phonons and
impurities) at finite temperatures [6], comparison with the

theoretical expectation for 0'5401)1 has been hampered by the
lack of a rigorous formalism that would allow calculation

of o, in complex multiband systems. It is thus desirable
to develop a general procedure for calculating all
scattering-independent contributions to allow for a com-
parison with experiments and engineering of materials
with necessary AHE properties. It should be possible to
identify the SJC by ac measurements in the clean limit (i.e.,
77! < A, the characteristic SO band-energy splitting): The
AHE is modified by the effects of disorder at low frequen-
cies, while at intermediate frequencies, Tl <w<A, the
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IC should be recovered as interband coherences caused by
disorder scattering do not build up [7].

In this Letter, we calculate the AHE in metallic non-
interacting multiband systems in the presence of delta-
correlated Gaussian disorder, expressing the result through
the Bloch wave functions, similar to the theory of the in-
trinsic AHE [3]. There is no skew-scattering contribution
within such model of disorder, and we assume nondegen-
erate bands. The main results of this Letter for the IC and
SJC are given in Eqgs. (2)—(4) requiring only the material’s
electronic band structure as the input. These equations
should apply to a wide range of metallic materials exhibit-
ing scattering-independent AHE [2]. The present theory
has been tested on the 2D Rashba Hamiltonian. Further-
more, the SJC is found to dominate the AHE in a model of
metallic ferromagnetic (IILMn)V semiconductors.

The Berry phase of Bloch states has a significant ef-
fect on transport properties, particularly on the AHE.
The origin of this lies in the anomalous velocity propor-
tional to the external electric field that modifies the group
velocity [3], i.e., hi = dxe,(k) — eE X B, (k), where
g,(k) is the band energy, E external electric field,
B, (k) = idx X (u,|dy|u,) Berry curvature, and e particle
charge (e < 0 for electrons). Modifications to the motion
of electrons (holes) in the nth band are defined solely in
terms of the periodic part of the Bloch wave functions
|u,)(k)). We will show that this is no longer the case due
to band mixing, in the presence of an infinitesimally small
disorder.

IC and SJC from the band structure.—Consider a gen-
eral multiband noninteracting system, in the k - p expan-
sion, up to some order in k about an extremum point in the
Brillouin zone. Below, we will consider Luttinger and
Rashba Hamiltonians as particular realizations of such
expansions. In the position representation, our N-band
projected Hamiltonian is expressed via “‘envelope fields™:

3o = 3 [arvh o=, v )
77’
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Here, W, is the envelope field of the nth band, with index
7 running from 1 to N. All information about our system,
such as SO interaction or exchange field, is contained in the
matrix structure of Hy(k), where k corresponds to —iV,.
The exchange field is introduced within the framework of a
mean-field description. In addition to the band
Hamiltonian, we include a scalar delta-correlated
Gaussian disorder V(r) with (V(r)V(r)) = h2 V(r — r').
In the absence of disorder, the anomalous velocity men-
tioned above leads to the intrinsic spin Hall conductance

ot = z/(d k dwnﬂmk A, -

i Ay A

”ITI m

2

where n = 2 or 3 is the number of spatial dimensions,
np(w) is the Fermi distribution function, and A, (k, w) is
the spectral function of the nmth band. The anomalous
transport is governed by the Berry-connection matrix
A w = 019, U, where U is a k- -dependent unltary matrix
diagonalizing the k - p Hamiltonian, (k) = UtA,(k)U.

In this Letter, we show that the SJC contains two terms
expressed via the electronic band structure as

Z ar 1k 1
(277) |ahk81]|[’j>c]nn

X Tr{([i’c]nnﬁﬁki‘g’\n[j‘r -
+ (ahkjsn)snﬂki(i

08, A 3.8,0MP,
— S’n)i/c} + c.c., 3)

d" 'k, i
Q@m)" 2ldmeq|[Felny
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and[C

Oin (8jj ] is the Kronecker delta symbol)

alii = (e — €;)'8,; for i # m and zero otherwise.

o "k, Uk)SU(k)TA/
yc(k)—U(k)f(nZ [(m)" L 200uey] ) e

and the matrix P corresponding to a subset of vertex
corrections denoted by I' in Fig. 1 is defined by a total of
N? linear equations with N equations

_cak, 08,0108, 01 — (ae,) 08, 01

P= 5
Gm! NomerFelyn ©)

for each 7). In the above equations, d"‘lk77 stands for the
integration over the Fermi surface of the nth band. The
SICs in Egs. (3) and (4) are distinct from the diagrammatic
point of view as will be clear below. The mechanism of the
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FIG. 1. The SJC diagrams for o;; expressed in the band
eigenstate basis described by the indices m and n (m # n). The
bold lines correspond to Gﬁm) (that can be replaced by disorder-
free GF’s for calculation of the SJC [11], while dashed lines
correspond to disorder strength V. By iterating Eq. (9) and ex-
panding as in Eq. (6), the leading-order contributions in Eq. (7)
can be expressed as two components of SJIC. The diagrams
beginning and ending with velocity involving single (multiple)
band(s) are termed as intraband (interband) diagrams.

former SJC relies on the effects related to the Berry curva-
ture, hence the dependence on A,.

Derivation.—In various theories of the AHE, it is com-
mon to express the conductivity via the Green’s functions
(GF’s) in equilibrium [8]. This requires as input informa-
tion about both the disorder and band structure. By taking
advantage of the band eigenstate representation, we will
express our results only via the band structure. To fulfill
this, we first express all GF’s via their diagonal parts as

G R(A) _

UTGR(A)U — [1 S(A)ifsA)]flGAg(A)

— GEW + GEVSENGEW 4 ©6)

Here and henceforth, the eigenstate representation is de-
noted by index ¢, KW = ¢t ER(A)U SRA 4 SRA) 4
the self-energy matrix separated into the diagonal and off-
diagonal parts, Gqu(A) = h(hw — H, — ifq(A))_l is the re-
tarded (advanced) GF in equilibrium, and G5 = f[he —
8(k) — (A)] 1
imaginary part of Gg(A) proportional to the spectral func-
tion A = i(é§ - GAQ) will be integrated out reducing the
problem to Fermi-surface integration. It is crucial to keep
off-diagonal matrices iﬁA) in Eq. (6) up to the necessary
order (the first order for the leading-order AHE) since they
contain information about the interband coherences that
play an important role in the AHE.

Our starting point is the expressions for the current
densities derived within the Kubo-Streda formalism [9]
by summing all noncrossed diagrams. These expressions
are also obtained in [8] using the Keldysh formalism:

d'k dw
h Qm)" 2
+ (GR 9G4, —

is the corresponding diagonal GF. The

j= Ea T VGE pGab;

(GA oG4, + GEOGR) /29,1 (D)
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0 d'k dw
il =
! h Qm)" 2

+ (G800, GE -

EnFTr[VGequGR D

a,GE vGR)v /2] +cc., (8)
where the vector-valued matrices p(w) and pX(w) satisfy
the following equations (D = 0, Hp):
p= (2 i (VG pGL, + GEdGL), 9)
d"k
2m)"
- 0,GRdGE)/2]. (10)
The GF’s can be found by using the self-energy,
EféA)(w) =hV fd"kégéA)(k, w)/(2m)", where only the
L SR(A)
imaginary part of 2.

ﬁlg - [VGequGR + (Ggqﬁawégq

should be calculated since the real
part can be combined with H, introducing corrections to

the eigenstates and eigenenergies of H, that vanish as we
take the strength of disorder to zero. Using Eq. (6), we can

write ImER(A) = %1 V¥ up to the lowest order in 'V where
n—1

d" 'k, USnU

Qm)" 1 2] e,

Y w) = Z (11)
n=1

is determined solely by the electronic band structure, and
the integral runs over the wave-vector surface correspond-
ing to energy iiw (we will only need ¥ at the Fermi level).

We next rewrite Egs. (7) and (8) through GF’s Gg(A)
using Eq. (6). In the limit of vanishing disorder, the first
term corresponding to vertex corrections in Eq. (8) van-
ishes. In the remaining terms, it is sufficient to use the

diagonal GF’s Gg(A) instead of (A}ffq(A). We can identify the
IC by combining j with several terms from j':
dk do
in = g T (G5v.0,G5
Ji oh (2 )n {nF r[( V.o,
—0,GR0.G%)(,); + c.c.]— 0, ,nTH{2GE .G

- G196y — GEo.GH(D.),]:

Using integration by parts and keeping only zeroth-order
terms in V, we arrive at Eq. (2).

To obtain the remaining terms in Eq. (7) up to the zeroth
order in 'V we expand Eq. (9) into an infinite series,
furthermore substituting this series into Eq. (7). In the
band eigenstate representation, we can further replace the
GF’s via diagonal ones according to Eq. (6). The resulting

infinite sum has the terms of order V~!:
ez d” lk Bhkjs,] - [Ufﬁ/U]”’l”’l
gij = n ki 2, 4
! hV (2 ) o 2|ahk8n|[7c]7]7]

leading to the symmetric part of the conductivity, which
describes the anisotropic magnetoresistance. The more
interesting terms contributing to the AHE appear at zeroth
order in 'V and can be graphically represented as two sets
of diagrams (see Fig. 1). The interband diagrams, corre-

sponding to calculating p = P/V + 0(V?) in Eq. (7) up
to the most singular (i.e., V') order, lead to Eq. (3). The
intraband diagrams, corresponding to calculating g in
Eq. (7) up to the zeroth order in V, lead to Eq. (4).
Here, P is an N X N matrix given by the solution to
Eq. (5), which corresponds to the leading-order vertex
correction to the bare velocity captured by I.

Application to Rashba and Luttinger models.—We first
apply Egs. (2)—(4) to a Rashba ferromagnet with {—; Q}
band gap at k = 0 arriving at expressions (Table I in
supplementary material [10]) consistent with the previous
works [11,8]. The vertex corrections lead to important
contributions and should in general be considered.

However, for inversion-symmetric systems with
Hy(k) = Hy(—k), the vertex corrections vanish for
short-ranged disorder as can be seen by inspecting the P
independent term in Eq. (5). Similar vanishing of the vertex
corrections takes place in calculations of the anisotropic
magnetoresistance and SHE [12]. We apply our theory to
four- and six-band Luttinger (inversion-symmetric with
P = 0) Hamiltonians with anisotropic Luttinger parame-
ters relevant to III-V semiconductor compounds. The
spherical model Hamiltonian in the presence of splitting
due to interactions with polarized Mn moments can be
written as follows within the mean-field description [13]:

g 0=

h? 5 4 A
] (4 5m ) —2mte 32| -ames, a2

where j is the angular momentum operator for J = 3/2, §
is the spin operator which has to be projected onto the J =
3/2 total angular momentum subspace (§ = j/3) within
the 4-band model, y; and 7y, are Luttinger parameters
defining the light- and heavy-hole bands with the effective
masses My, = m,/(y) * 27y,), in terms of the free-
electron mass m,, m is the magnetization polarization
direction, and () is the mean field proportional to the
average of local moments. For fully polarized Mn spins,
m is uniform and ) = Ny, SJq, Where Ny, is the density
of Mn ions with spin § = 5/2, and Jpa = 50 meV nm? is
the strength of the exchange coupling between the local
moments and the valence-band electrons [14]. The corre-
sponding six-band Hamiltonian can be found in [13]. As
the vertex corrections vanish, all terms involving P in
Egs. (3) and (4) vanish, leading, up to linear order in (),
to the following analytical result for Hamiltonian (12):

g _ 0o5p(1 = yp) +3(1 = p°?) ;3
R T (s (e B

(Qe?/3m°h?)mpy, 2hwp and p = my,/my,.
oy is in the range from 0.30 to o increasing as p — 1.

In Fig. 2(a), we present results for the spherical four- and
six-band Hamiltonians. The parameters match GaAs effec-
tive masses my, = m,/2, p = 0.16 and the gap A, =
341 meV. The SJC does not change much as we vary

where oy =

036601-3



PRL 105, 036601 (2010) PHYSICAL

REVIEW LETTERS

week ending
16 JULY 2010

<O

80_ int

604 "% A —©0
S

0.00 0.05 0.10 0.15 0.20
Q(eV
(eV) b)

~<(In,Mn)As

Lest

0.00 0.05 0.10
Q(eV)

FIG. 2 (color online). SJC and IC as a function of the mean
field; (a) A,, — o corresponds to four-band model and A, =
341 meV corresponds to GaAs host, the hole density is
0.35 nm3; (b) the plots correspond to the InAs (GaAs) hosts
with the hole densities 0.1(0.35) nm 3. By arrows, we mark the
mean fields ) = 25(122) meV for the former (latter) [5,14].

A, The SJIC can become dominant for the smaller gaps
since the IC sharply diminishes eventually changing sign.
For a more accurate description of the valence
bands in III-V semiconductor compounds, one has to in-
troduce the third Luttinger parameter ys;. This leads to
band warping which has a strong effect on the IC [5].
Our calculations show that the SJC is accelerated by the
presence of band warping. In Fig. 2(b), we present results
for Mn-doped InAs (GaAs) hosts for which A =
430(341) meV and [y, y,, y3]=[19.67,8.37,9.29]([6.85,
2.1,2.9]) [13]. In both cases, the AHE is dominated by the
SJC. We use densities Ny, = 0.23(1.1) nm ™3 for the InAs
(GaAs) hosts leading to saturation values of the effective
field Q) = 25(122) meV [5,14]. Taking the hole density as
in Ref. [5] [0.1(0.35) nm 3 for InAs (GaAs) hosts], we
arrive at the AHE o, = 16(85)Q "' cm™'. The IC agrees
with the previous calculations [5] while the total AHE
overestimates the experimental values [14,15] as the ex-
periments are only on the border of the metallic regime.
Summary.—We formulated a theory of the AHE for
metallic noninteracting multiband systems with the result
for the IC and SJC being expressed through the material’s
electronic band structure. Our derivation relies on the
minimal coupling with the electromagnetic field in
Hamiltonian (1), which is justified when a sufficient num-
ber of bands is considered. (E.g., the side-jump scattering
in conduction bands due to spin-orbit coupling associated
with impurities [16] can be described within our approach
by resorting to the eight-band Kane model.) In contrast to
the theory of the IC, the electron (hole) motion in a
particular band cannot be defined in terms of the Bloch
wave functions of the same band in the presence of
disorder-induced band mixing. The SJC does not depend
on the disorder strength but will generally change with the
type of disorder (e.g., short-range impurities vs phonon

scattering). The associated scattering regime crossovers
can be accompanied by a sign change of the AHE as the
IC and SJC can be of opposite sign. The AHE sign change
has been observed in Fe and (Ga,Mn)As [17]. Ac measure-
ments, furthermore, can quench the SJC in clean samples at
intermediate frequencies 7' < w < A. We demonstrated
our theory on electronic band structures of the 2D Rashba
and 3D Luttinger Hamiltonians. Within our simple model,
the AHE in the metallic (In,Mn)As and (Ga,Mn)As mag-
netic semiconductors at low temperatures is dominated by
the SJC. The proposed theory can be used in ab initio cal-
culations of the AHE in wide range of metallic materials.
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