
Quantum Critical Behavior of Electrons at the Edge of Charge Order

L. Cano-Cortés,1 J. Merino,1 and S. Fratini2
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We consider quantum critical points in which quantum fluctuations associated with charge rather than

magnetic order induce unconventional metallic properties. Based on finite-T calculations on a two-

dimensional extended Hubbard model, we show how the coherence scale T� characteristic of Fermi liquid

behavior of the homogeneous metal vanishes at the onset of charge order. A strong effective mass

enhancement reminiscent of heavy fermion behavior indicates the possible destruction of quasiparticles at

the quantum critical points. Experimental probes on quarter-filled layered organic materials are proposed

for unveiling the behavior of electrons across the quantum critical region.
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Introduction.—Quantum critical points (QPCs) occur at
zero-temperature second order phase transitions in which
the strength of quantum fluctuations is controlled by an
external field such as pressure, magnetic field, or chemical
composition [1]. In recent years intensive studies have
focused on itinerant electrons at the edge of magnetic order
being the heavy fermion materials [2–4] prototypical ex-
amples. Much less explored but equally interesting are
QCPs arising from tuning the electrons close to a charge
ordering instability. This situation is realized in the quarter-
filled families of layered organic superconductors [5] of the
�, �00, and �-ðBEDT-TTFÞ2X types. Large electron effec-
tive mass enhancements and non-Fermi liquid metallicity
at finite T are observed in ðMeDH-TTPÞ2AsF6 and
�-ðDHDA-TTPÞ2SbF6 above a critical pressure at which
the charge order found at ambient pressure melts [6,7].
Such heavy fermion behavior may appear puzzling, con-
sidering the different � orbitals of the organics as com-
pared to the f orbitals in the rare earths, but can find a
natural explanation based on the universal properties of
matter expected near a QCP.

Charge ordering (CO) phenomena in quarter-filled lay-
ered organic materials are observed in a wide variety of
crystal structures, not limited to specific Fermi surface
shapes or nesting. This indicates the importance of on-
site and intersite Coulomb repulsion [8,9] between � elec-
trons as the driving force of CO, and in turn implies that
electronic correlation effects similar to those found in half-
filled systems are inevitably present. These should be
considered together with the quantum critical fluctuations
of the order parameter to understand the metallic properties
in the neighborhood of the present Coulomb-driven tran-
sition. The latter can, in principle, differ from more stan-
dard charge density wave instabilities of the Fermi surface.

In this Letter we analyze theoretically the possible ex-
istence of a QCP at a CO transition driven by the quantum
fluctuations associated with strong off-site Coulomb repul-
sion, in the absence of Fermi surface nesting. The influence

of the T ¼ 0 singular quantum critical point on the finite
temperature metallic properties is studied based on finite-T
Lanczos diagonalization [10,11] of an extended Hubbard
model on an anisotropic triangular lattice. At quarter filling
(n ¼ 1=2 hole per molecule), lattice frustration naturally
leads to charge ordered metallic states with a single CO
pattern. Our main result is the existence of a temperature
scale T� in the dynamical and thermodynamic properties of
the system, which is suppressed as the CO transition is
approached from the homogeneous metal. The electronic
specific heat coefficient at low temperatures is found to be
strongly enhanced close to the QCP in analogy with studies
of quantum criticality in heavy fermions. Following this
analogy, non-Fermi liquid behavior should occur at finite T
in quarter-filled organic conductors at the edge of a CO
instability and could be directly probed by several experi-
mentally measurable quantities. Because of the universal
character of the proposed quantum critical scenario, our
results could also be relevant to broader classes of systems
where Coulomb-driven CO occurs, not restricted to the
particular ordering pattern studied here.
Model.—We focus on the extended Hubbard model,

H ¼ X

hiji�
tijðcyi�cj� þ H:c:Þ þU

X

i

ni"ni# þ
X

hiji
Vijninj;

(1)

on the anisotropic triangular lattice shown in Fig. 1(a),
where tij ¼ ðtp; tcÞ are the transfer integrals between near-
est neighboring molecules, respectively, along the diagonal
(p) and vertical (c) directions, Vij ¼ ðVp; VcÞ are the cor-

responding intermolecular Coulomb interaction energies,
andU is the intramolecular Coulomb repulsion. The model
Eq. (1) has been studied via a variety of techniques due to
its relevance to �-type two-dimensional organic conduc-
tors (see Ref. [12] for a recent review). Here we follow the
standard practice and neglect longer-range Coulomb inter-
actions [12] as well as electron-lattice effects [13] that are
however essential to recover the various ordering patterns
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realized in these materials. For the sake of simplicity we
consider an isotropic intersite repulsion Vc ¼ Vp � V and

set tc ¼ 0, tp � t > 0. This choice is representative of the

�-ET2X salts with X ¼ CsCoðSCNÞ4, X ¼ CsZnðSCNÞ4,
and X ¼ I3 where the molecular orbital overlap is strongly
suppressed along the c direction [8,12]. These materials lie
close to (on both sides of) the bandwidth controlled CO
transition in Mori’s phase diagram [8] and are therefore
optimal candidates for the observation of an interplay
between critical charge fluctuations and electronic corre-
lation effects.

Phase diagram.—The phase diagram obtained at T ¼ 0
from the numerical diagonalization of the model Eq. (1) on
Ns ¼ 12 andNs ¼ 18 site clusters is presented in Fig. 1(b).
The different phases can be identified by analyzing the
behavior of the charge correlation function NsCðqÞ ¼
N�1

s

P
ijhninjieiq�Rij . In the thermodynamic limit, this

quantity diverges at a single wave vector Q � 0 at the
onset of charge order. An accurate numerical determina-
tion of the phase boundaries relying on a proper finite-size
scaling of the results is prohibitive for the fermionic system
under study, due to the rapidly increasing size of the
Hilbert space. We therefore identify the T ¼ 0 ordering
transition, VCO, as the locus of steepest variation of charge
correlations upon varying the interaction parameters. An
analogous procedure is used to determine the melting
temperature of CO, TCO. In the physically relevant regime
explored here, U=t & 20 [14], the phase boundaries agree
on the two cluster sizes.

In the absence of nearest-neighbor repulsion, V ¼ 0, the
system remains in a homogeneous metallic phase up to
arbitrary values of the local interaction, U, as holes can
effectively avoid each other at concentrations away from
integer fillings. An instability towards a charge ordered
state with threefold periodicity is realized instead upon
increasing the intersite interaction, V, as was previously
obtained by different approaches [12,15–19]. The resulting
threefold ordering pattern is shown in Fig. 1(b).

At low and moderate values ofU=t & 5, down toU ¼ 0,
the CO transition essentially follows the predictions of

mean-field approaches [12,15,16]. A calculation in the
random phase approximation yields VCO ¼ 1:06tþU=6,
which is shown as a dotted line in Fig. 1(b). This law is
correctly recovered by the numerical data at low U, but
sizable deviations appear at as soon asU=t * 10 due to the
increasing effects of many-body electronic correlations.
The boundary obtained numerically in this region is inde-
pendent of the cluster size, and our value VCO=t ¼ 3:5 at
U=t ¼ 10 is in good agreement with existing numerical
results in larger systems [18,19].
Before moving to the analysis of the correlated metallic

phase at the edge of charge order, let us note that the charge
correlation function also provides indications of a cross-
over taking place within the CO phase, separating a con-
ventional threefold state from a more exotic ‘‘pinball
liquid’’ phase [17]. The latter arises because at large U,
mean-field like configurations where charge-poor mole-
cules are completely depleted become energetically unfav-
orable, as these imply that each charge rich molecule
should accommodate up to 3=2 holes on average. To
prevent double occupancy, part of the hole density neces-
sarily spills out and decouples from the charge rich sub-
lattice, resulting in a separate fluid moving freely in the
remaining sublattice [17]. This partial ordering, occurring
for V & U=3, corresponds to a value CðQÞ ¼ n2=3, to be
contrasted with the value CðQÞ ¼ n2 obtained in the three-
fold state at large V.
The correlated metal close to charge ordering.—We

start by analyzing the kinetic energy of the interacting
system, a quantity that provides direct information on
how the motion of the charge carriers is hindered by
interactions, and can be evaluated with good accuracy
through finite-T Lanczos diagonalization. Its importance
in correlated systems has been recently recognized [20,21],
and resides in the fact that it can in principle be accessed
from optical absorption experiments, providing a quantita-
tive measure of many-body correlation effects.
The kinetic energy, K, normalized to the noninteracting

band value, K0, is shown in Figs. 2(a) and 2(b), respec-
tively, for U=t ¼ 5 and U=t ¼ 15, for several values of the
intersite repulsion across the CO transition. AtU=t ¼ 5 the
kinetic energy at T ¼ 0 stays essentially unrenormalized,
K=K0 * 0:9, upon increasing V all the way up to the CO
transition occurring at VCO ¼ 2:33t, as expected in a
weakly correlated Fermi liquid. It then suddenly drops to
a value K=K0 � 0:6 upon entering the charge ordered
phase. This residual value is ascribed to local (incoherent)
hopping processes in the charge ordered pattern [20] and to
the motion of remnant itinerant electrons not gapped by the
ordering transition [16,18].
A richer behavior is revealed by the data at finite tem-

peratures, which clearly indicates the emergence of a
temperature scale T� that marks an analogous suppression
of the kinetic energy occurring within the homogeneous
metallic phase (we define T� as the locus of steepest
variation of K with temperature, denoted by arrows in
Fig. 2). The scale T� appears to be entirely controlled by
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FIG. 1 (color online). (a) Lattice structure and microscopic
parameters of the extended Hubbard model Eq. (1). (b) Phase
diagram obtained at T ¼ 0 from numerical diagonalization of
Ns ¼ 12 (solid line) and 18 sites clusters (dashed line). RPA is
the random phase approximation.

PRL 105, 036405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

036405-2



the approach to the zero-temperature ordering transition, a
behavior that is strongly reminiscent of what is expected
close to a QCP. The situation is similar at U=t ¼ 5 and
U=t ¼ 15 [Fig. 2(b)], although in the latter case the kinetic
energy ratio at T ¼ 0 is already reduced down to values
K=K0 � 0:7 before entering the CO phase at VCO ¼ 4:83t,
which is indicative of a moderately correlated electron
liquid. In this case the quantum critical behavior adds up
to the correlated electron picture, affecting the motion of
electrons that have already been slowed down by local
electronic correlations.

The above observations can be directly related to the
low-energy quasiparticle properties by analyzing the tem-
perature dependence of the integrated optical weight
Ið!Þ ¼ R

!
0 �ð!0Þd!0. The low-frequency integral Ið! ¼

0:5tÞ, reported in Fig. 2(c), comprises most of the quasi-
particles contributing to the Drude behavior in a normal
Fermi liquid, while excluding higher-energy incoherent
excitations arising from the strong electronic interactions.
Comparison of Figs. 2(b) and 2(c) demonstrates that the
strong reduction of kinetic energy above T� primarily
originates from a drastic suppression of the low-energy
coherent quasiparticles. Finally, Fig. 2(d) illustrates Ið!Þ
at a given V=t ¼ 4:8 just below the CO transition, showing
that the quasiparticle weight lost at T� is partly transferred
to high-energy excitations, which are broadly distributed
on the scale of U, V.

The above results are summarized in the finite tempera-
ture phase diagram of Fig. 3, which constitutes the central
result of this work. Scaled units V=VCO are used so that the
weakly (U=t ¼ 5) and moderately (U=t ¼ 15) correlated
cases can be directly compared, illustrating the universality
of the T� phenomenon in proximity to the CO instability.

Both T� and TCO appear to vanish at VCO, leading to a
funnel-type ‘‘bad’’ metallic region with strong quantum
critical fluctuations.
To obtain further insight into the behavior of quasipar-

ticles near the CO instability and make contact with the
established concepts of quantum criticality, we have calcu-
lated the specific heat coefficient � ¼ CV=T. Our results,
reported in Fig. 4(a), resemble the behavior of nearly two-
dimensional antiferromagnetic metals in which a singular
increase is expected upon lowering the temperature close
to the QCP, crossing over to a constant value at the onset of
Fermi liquid behavior [4,22]. Curves similar to those in
Fig. 4(a) are commonly observed in heavy fermion systems
[4,23,24]. As a striking confirmation of the QCP scenario
emerging from the preceding paragraphs, we see that there
is a direct correspondence between thermodynamic and
dynamical properties: the peak position in the specific
heat essentially coincides with the temperature T� derived
from the kinetic energy and the low-frequency optical
integral near to the QCP (see Fig. 3).
Finally, we discuss the behavior of the effective mass as

extracted from the low-temperature limit of the specific
heat coefficient (in practice we estimate m� from the peak
value of � to overcome the numerical limitations of the
Lanczos technique at low T). It can be expected on general
grounds that the strong electron-electron interactions re-
sponsible for the threefold CO will strongly affect those
parts of the Fermi surface that are connected by momenta
closest to the ordering wave vector Q. This should lead to
the emergence of ‘‘hot spots’’ with divergent effective
mass, m�=mb / lnð1=jV � VCOjÞ, in full analogy to the
situation encountered in metals close to a magnetic insta-
bility [22,25]. The effective mass reported in Fig. 4(b)
indeed shows a marked enhancement at the approach of
VCO, which adds to a moderate renormalization m�=mb &
2 provided by noncritical electronic correlations. Whether
the destruction of quasiparticles remains confined to such
‘‘hot spots’’ or spreads over the whole Fermi surface is an
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FIG. 2 (color online). Kinetic energy of the Ns ¼ 12 interact-
ing system at U=t ¼ 5 (a) and U=t ¼ 15 (b); T dependence of
low-frequency optical weight (c), and integrated optical spectral
weight Ið!Þ for T=t ¼ 0:01, 0.03, 0.05, and 0.1–0.5 in 0.1
intervals (d). Arrows in (a), (b), (c) correspond to inflection
points of the curves, defining the temperature scale T�.

FIG. 3 (color online). Finite temperature phase diagram illus-
trating the emergence of non-Fermi liquid properties induced by
the proximity to the charge ordering transition. The interaction
strength has been rescaled to the critical values to compare QCP
related properties for weakly and moderately correlated systems.
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unsettled issue that is also actively debated in the context of
heavy fermion materials [2,3].

Concluding remarks.—Our results indicate the occur-
rence of non-Fermi liquid behavior driven by a combina-
tion of electronic correlations and quantum critical fluc-
tuations close to a CO instability in quarter-filled organic
conductors. Quantum critical behavior has been recently
reported in transport studies of the quarter-filled com-
pounds �-ðDHDA-TTPÞ2SbF6 and ðMeDH-TTPÞ2AsF6,
by tuning the system across the CO transition via an
applied pressure [6,7]. A stringent verification of our theo-
retical predictions could be achieved in the conductor
�-ðBEDT-TTFÞ2I3, whose band structure is properly de-

scribed by the model Eq. (1). Remarkably, this is the only
salt of the � family exhibiting superconductivity and is at
the edge of CO. Recent optical studies [26] have shown a
rapid loss of electron coherence upon increasing the tem-
perature, associated with a marked reduction of kinetic
energy as obtained here, and the evolution of the integrated
spectral weight Ið!Þ with temperature found experimen-
tally compares very well with our result in Fig. 2(d). The
presence of an unexplained far infrared absorption peak
whose position is controlled by the temperature scale T
alone could be a clue of an emergent collective excitation
of the QCP [27]. This material undergoes a CO transition
under pressure [28], which could be directly exploited to
probe the quantum critical behavior, applying the plethora
of experimental techniques that are commonly used in the
study of heavy fermion materials. Hall coefficient as well
as de Haas–van Alphen experiments appear to be ideal
probes to test whether quasiparticles are destroyed over the
whole Fermi surface or on some regions only, shedding
light on the nature of the charge order QCP.
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FIG. 4 (color online). (a) Specific heat coefficient � ¼ CV=T
in units of 1=t for U=t ¼ 15. The curves are shown down to a
temperature comprising �10 excitations in the Lanczos diago-
nalization. (b) Effective mass ratio, m�=mb, estimated from the
peak value of � shown in (a).
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