
Partial Kondo Screening in Frustrated Kondo Lattice Systems

Yukitoshi Motome, Kyoya Nakamikawa, Youhei Yamaji, and Masafumi Udagawa

Department of Applied Physics, University of Tokyo, Hongo, Tokyo 113-8656, Japan
(Received 28 April 2010; published 14 July 2010)

We investigate the effect of geometrical frustration on the competition between the Kondo coupling and

the Ruderman-Kittel-Kasuya-Yosida interaction in Kondo lattice systems. By variational Monte Carlo

simulations, we reveal an emergent quantum phase with partial ordering in which the frustration is

relieved by forming a magnetic order on a sublattice and leaving the rest in the Kondo screening with spin-

singlet formation. The role of quantum fluctuations and spin-charge interplay is elucidated.
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Kondo lattice systems provide a fertile ground for study-
ing fascinating phenomena in strongly correlated electron
systems [1]. The key concept is competition between the
Kondo coupling and the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction. The former is a local antiferromag-
netic (AFM) interaction between conduction electrons and
localized moments, which promotes spin-singlet formation
and results in Fermi liquid states, as the so-called Kondo
effect [2]. On the other hand, the latter RKKY interaction is
an effective magnetic coupling between localized moments
mediated by conduction electrons, which tends to stabilize
a magnetic ordering [3]. The competition leads to a quan-
tum critical point (QCP) between a Fermi liquid state and a
magnetically ordered state [4]. QCP has attracted much
attention as a source of fascinating phenomena, such as
non-Fermi-liquid behavior and superconductivity.

In the present study, we explore yet another phenomenon
emergent from the competition between the Kondo cou-
pling and the RKKY interaction. Our interest is in the
possibility to have an intermediate quantum phase induced
by geometrical frustration, which preempts QCP, with a
coexistence of screened local moments due to the Kondo
singlet formation and magnetically ordered moments sta-
bilized by the RKKY interaction. This is a partially ordered
state, which we call the partial Kondo screening (PKS)
state in this paper.

The partial ordering is sometimes seen in localized spin
systems with geometrical frustration [5]. Our target PKS is,
however, qualitatively different from the partial ordering in
localized spin systems in the following points: The system
includes itinerant electrons, and the disordered sites are not
simply paramagnetic but participate in the Kondo singlet
formation with vanishing their moments. These differences
will bring about many distinctive aspects not only in the
stabilization mechanism of the partial order but also in the
resulting physical properties.

Several candidates for PKS are experimentally found in
f-electron compounds, e.g., a distorted kagome material
CePdAl [6,7] and a triangular material UNi4B [8,9]. These
PKS states were theoretically studied by the mean-field
approximation of a pseudomoment model, which describes
the magnetic and singlet states by discrete classical varia-

bles [10–12]. In the previous studies, the effects of quan-
tum fluctuations and the interplay between conduction
electrons and localized moments are not fully taken into
account, despite the fact that they are obviously crucial in
the spin-charge coupled systems.
In this Letter, we explore PKS as a quantum phase for

the Kondo lattice model and the Kondo necklace model on
frustrated lattices. The Kondo lattice model (KLM) is one
of the fundamental models for rare-earth compounds,
whose Hamiltonian reads

H ¼ �t
X

hiji�
ðcyi�cj� þ H:c:Þ þ J

X

i

�i � Si þ Iz
X

hiji
SziS

z
j;

(1)

where the first term describes the hopping of conduction
electrons and the second term represents the Kondo cou-
pling between the conduction electron spin �i and the
localized spin Si. For simplicity, we consider S ¼ 1=2
spins for the localized spins. In Eq. (1) we extend the
model by adding the last term, the AFM Ising interaction
between localized spins (Szi is the z component of Si), in
order to mimic the magnetic anisotropy often seen in real
materials [13]. The Kondo necklace model (KNM) is a
simplified variant of KLM at half filling [4]:

H ¼ W
X

hiji
�i � �j þ J

X

i

�i � Si þ Iz
X

hiji
SziS

z
j; (2)

where the charge degree of freedom of conduction elec-
trons is suppressed with assuming that there is one electron
localized at every site. Instability toward PKS in KNMwas
studied previously by the authors for limited lattice ge-
ometries and system sizes [14]. We consider the two mod-
els on one of the simplest frustrated lattices, the two-
dimensional triangular lattice, and take the sums hiji over
the nearest-neighbor sites.
We study the ground state of the models (1) and (2) by

the variational Monte Carlo (VMC) method. The method
has several advantages compared to others; e.g., it takes
account of quantum fluctuations neglected in the mean-
field approximation, and it can avoid the minus sign prob-
lem even in frustrated systems. We here consider the varia-
tional wave function in the form
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jc i ¼ PGLS¼0LK¼0j�pairi; (3)

which describes magnetic states and nonmagnetic sin-
glet states on an equal footing as a natural extension
of the Yosida-type wave function [15]. Here j�pairi is a

generalized BCS wave function defined by j�pairi ¼
ðP2N

‘;m¼1 f‘ma
y
‘"a

y
m#ÞNe j0i, where f‘m are the variational

parameters and j0i is a vacuum: The fermion operators
a‘� represent both conduction ci� and localized electrons
(or localized spins), resulting in pair creations for any
combination of them. We focus on the half-filling case
by setting Ne ¼ N, where N is the number of lattice sites.
The electron number is fixed to be one at each localized
spin site. LS¼0 andLK¼0 are the quantum-number projec-
tion operators for the total spin singlet and the total mo-
mentum zero, respectively. PG is the Gutzwiller factor for
optimizing the weight of configurations with double occu-
pancies in KLM; PG ¼ expð�P

igini"ni#Þ, where gi are the
variational parameters and ni� ¼ cyi�ci�. We follow
Ref. [16] to optimize a large number of variational parame-
ters by using the stochastic reconfiguration [17] and to
enforce the quantum-number projections.

In the present study, we explore the solutions with three-
sublattice ordering by imposing LK¼0 only for the same
sublattices and by considering only the sublattice depen-
dence of gi in PG. LS¼0 is used only for Iz ¼ 0. Typically,
the optimization is achieved by 300–1000 stochastic re-
configuration steps with 1600–6000 Monte Carlo sam-
plings. We confirm that the optimized wave function
gives a precise ground-state energy compared to the results
by the exact diagonalization; e.g., the relative error is less
than 0.03 for KNM with N ¼ 12. We apply the method to
the clusters with system size N ¼ 12, 18, and 24 with
imposing the boundary conditions compatible with the
three-sublattice order.

First we discuss the results for KNM given by Eq. (2).
Figure 1(a) summarizes the ground-state phase diagram
determined by VMC. There are three distinct regions, i.e.,
a magnetically ordered (MO) state in the small J=W re-
gion, a Kondo spin liquid (KSL) state in the large J=W
region, and a PKS state in between. The MO state for small
J=W has a three-sublattice ordering as schematically
shown in the figure. This peculiar order is governed by
the first and third terms in the Hamiltonian (2) as discussed
later. In the opposite large-J=W region, the second term
becomes dominant, and the Kondo singlet is formed at
every site to realize KSL. In the intermediate competing
regime, we obtain the PKS phase in which one sublattice is
dominated by the local Kondo singlet formation and the
remaining two retain magnetic ordering, as schematically
depicted in the figure.

Then we show how we identify three phases in the
following. Figure 2 plots J=W dependences of the on-site
correlation h�i � Sii� and the intersite correlation between

the localized spins on the same sublattice hSi � Sji� (�

denotes A, B, or C). In the intermediate J=W region, the

on-site correlation h�i � Sii� on one sublattice (C in this

case) becomes considerably larger in magnitude than the
other two, as shown in Figs. 2(a)–2(c). The difference � ¼
jh�i � SiiC � ðh�i � SiiA þ h�i � SiiBÞ=2j is plotted for dif-
ferent system sizes N in each inset. In the same region,
hSi � SjiC is suppressed compared to those for A and B

sublattices, and, moreover, it decays quicker with increas-
ing distance than the other two [Figs. 2(d)–2(f)]. These are
clear indications of PKS; the local Kondo singlet is en-
hanced on the C sublattice compared to the rest magneti-
cally active sublattices [18].
Such specific spin configuration in the PKS state is also

evidenced by the intersite correlations among different
sublattices plotted in Figs. 3(a) and 3(b). For both �i and
Si, the intersite correlations measured from the C sublattice
are suppressed, while those between A and B sublattices
are robustly AFM. Therefore, the spin configuration of the
PKS state is basically composed of enhanced Kondo sin-
glets on one sublattice and the AFM network on the
remaining unfrustrated honeycomb lattice, as schemati-
cally shown in Fig. 1(a).
In the smaller J=W region, Figs. 3(c) and 3(d) show that

h�i � �ji is almost independent of the sublattice, while

hSi � Sji ’ �1=4 between A and B but hSi � Sji ’ 0 be-

tween C and other sublattices. These behaviors indicate the
three-sublattice order for the MO phase in Fig. 1(a): �i
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FIG. 1 (color online). Phase diagrams for (a) the Kondo
necklace model and (b) the Kondo lattice model at half filling
on the triangular lattice determined by VMC. The lines are
guides for the eye connecting the data for N ¼ 18. There are
three phases: MO, PKS, and KSL. Schematic pictures for the
spin state in each phase are shown in (a), where the gray (black)
arrows represent �i (Si) and the circles denote the Kondo
singlets. The dot-dashed and dashed lines in (a) show the phase
boundaries for MO-PKS and PKS-KSL, respectively, determined
by the mean-field approximation.
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forms almost 120� order to optimize the W term, while Si

exhibits an almost collinear AFM order in A and B sub-
lattices with leaving perpendicular spins on the C sublat-
tice to optimize the Iz term.

On the other hand, for large J=W, all h�i � Sii� become

identical within the statistical error bar and take a value
close to �3=4, as shown in Figs. 2(a)–2(c). At the same
time, all hSi � Sji� merge and become small with show-

ing a rapid decay with the distance, as plotted in Figs. 2(d)–
2(f). These are a sign of the KSL phase where the spins
form singlets locally as h�i � Sii� ��3=4.

The phase boundaries are determined from the behaviors
of these spin correlations. In particular, the MO-PKS
boundary is determined by a sudden change of intersite
spin correlations in Figs. 2(d)–2(f) as well as by the onset
of� in Figs. 2(a)–2(c). Two states have the same symmetry
in terms of spins apparently [18], but we conclude that
there is a phase transition between them in the light of the
mean-field results discussed below.

Let us make a remark on the limit of Iz � J (�W). In

this limit, ~Si are decoupled from ~�i and expected to be
disordered with macroscopic degeneracy [19]. Since J

tends to lift the degeneracy through flipping ~Si, the system
is mapped onto a transverse-field Ising model on the trian-
gular lattice, for which a three-sublattice partial order is
suggested to appear [20]. Such consideration leads us to

expect the three-sublattice PKS state in the limit of Iz � J;
this appears to be consistent with the result in Fig. 1(a).
The VMC phase diagram is compared with that by the

mean-field approximation (MFA) in Fig. 1(a). Here we
perform MFAwhich accommodates three-sublattice order-
ing by extending the method in Ref. [4]. MFA also predicts
three phases: MO, PKS, and KSL. However, there are
several differences compared with the VMC results. The
most distinct one is that VMC predicts the PKS state in a
finite range of J=W down to Iz ¼ 0, whereas it disappears
at Iz ¼ 0 in MFA. Another important difference is that
VMC phase boundaries shift to smaller J=W compared
to the MFA results, and the width of MO state becomes
relatively narrower. These are consequences of intersite
quantum fluctuations neglected in MFA.
Now we turn to KLM in Eq. (1), which includes itiner-

ancy of electrons explicitly. Figure 1(b) summarizes the
phase diagram at half filling. We find that KLM ex-
hibits a similar sequence of three phases including PKS.
The corresponding on-site correlations are plotted in
Figs. 4(a)–4(c). As seen in KNM [Figs. 2(a)–2(c)],
h�i � Sii� becomes larger on one sublattice than the other

two in the PKS region. Although� [insets in Figs. 4(b) and
4(c)] suffers from finite-size effects (the reason is discussed
below), we determine phase boundaries from qualita-
tively similar changes of spin correlations to those in
Figs. 2(d)–2(f) and in Fig. 3 (not shown). At Iz ¼ 0, PKS
behavior is not clearly observed in KLM [Fig. 4(a)].
Furthermore, the MO region is wider than in KNM; we
return to this point below. Consequently, PKS region be-
comes relatively narrower compared to the KNM case yet
remains robust between the MO and KSL phases even
when conduction electrons are considered explicitly.
The relatively wider MO phase is presumably attributed

to the complicated role of J in KLM: J enhances the
RKKY interaction which tends to stabilize magnetic order-
ing, in addition to the enhancement of the spin-singlet
formation. In addition, the notable system-size dependence
in the small J=t region [the insets in Fig. 4] might be due to
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FIG. 2 (color online). (a)–(c) On-site correlation for the three-
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various system sizes N. (d)–(f) Intersite correlation between
localized spins on the same sublattice. Closed and open symbols
show the results for the distance
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N ¼ 18 and at (a),(d) Iz ¼ 0:0, (b),(d) Iz=W ¼ 0:4, and (c),
(f) Iz=W ¼ 0:8. The lines are guides for the eye.
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the long-ranged and oscillating nature of the RKKY inter-
action [3], which is difficult to capture within the small
finite-size clusters. Further study in larger system sizes is
desired to clarify the nature of MO in KLM.

Another interesting observation related with the charge
degree of freedom in KLM is that PKS accompanies charge
disproportionation. The local charge hnii� ¼ P

�hni�i�
disproportionates among the sublattices as shown in
Figs. 4(d)–4(f). An instability toward charge density
wave was recently discussed for the unfrustrated KLM
model around quarter filling [21]. The relation is not clear
between the instability and our PKS with charge dispro-
portionation. It is interesting to study the possibility of PKS
for general filling, in particular, at commensurate filling.

In summary, we have investigated the effect of geomet-
rical frustration on the competition between the RKKY
interaction and the Kondo coupling by the variational
Monte Carlo simulation for the Kondo lattice model and
the Kondo necklace model. The comparative study be-
tween two models reveals the following features. (i) Both
models exhibit PKS phase in between MO and KSL
phases. (ii) The PKS state is further stabilized by quantum
fluctuations and the spin anisotropy. (iii) Charge degree of
freedom manifests in the stability of the MO phase and in
the charge disproportionation associated with PKS. All the
results illuminate the appearance of the PKS phase in the
Kondo lattice systems even when taking into account
quantum fluctuations and spin-charge interplay, both of
which have not been studied in the previous studies. We
believe that the results pave the way for further under-
standing of PKS observed in complicated materials and of
expected spin-charge entangled phenomena inherent to

PKS. Our results will also cast a new light on the recent
efforts to explore a new paradigm of QCP physics in the
Kondo problem [22,23].
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FIG. 4 (color online). (a)–(c) On-site correlation and (d)–
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