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We study the effect of electron-electron interaction on transport through a tunnel-coupled single-

channel ring. We find that the conductance as a function of magnetic flux shows a series of interaction-

induced resonances that survive thermal averaging. The period of the series is given by the interaction

strength �. The physics behind this behavior is the blocking of the tunneling current by the circular

current. The main mechanism of dephasing is due to circular-current fluctuations. The dephasing rate is

proportional to the tunneling rate and does not depend on �.
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A major focus of interest in nanophysics [1] has been
quantum interference effects on one hand and charge-
quantization effects on the other, both of which become
more prominent with decreasing dimensionality and size of
the device. The prime device for specifically probing the
interference of electrons is a quantum ring connected to the
leads. The conductance of the ring Gð�Þ exhibits the
Aharonov-Bohm (AB) effect [2], i.e., changes periodically
with the magnetic flux� threading the ring—with a period
�0 ¼ hc=e—entirely due to the interference of electron
trajectories winding around the hole.

A key concept in the study of coherent electron transport
is that of dephasing of electron waves, which at low
temperature T is due to electromagnetic fluctuations pro-
duced by electron-electron (e-e) interactions [1]. The AB
effect is one of the most convenient tools for studying the
dephasing processes, since these directly govern the am-
plitude of the flux-dependent part of Gð�Þ.

The most ideal quantum-ring interferometer would be
one made up of single-channel—ultimately one-
dimensional (1D)—quantum wires. The basic physics of
this deceptively simple setup may, however, become con-
ceptually intricate. Indeed, it is well known that e-e inter-
actions in 1D transform the electron gas into a Luttinger
liquid (LL) [3]. The issue raised is the nature of the
interference and dephasing in this strongly correlated state.
Direct confrontation with experiment appears now to be
possible since many-electron nanorings with a few or
single conducting channels have been manufactured
[4,5]. Transport of interacting electrons through the
single-channel ring is the subject of this Letter.

We study the AB conductance of a LL ring weakly
coupled by tunneling contacts to the leads. Throughout
the Letter we focus on the high-temperature regime,

T � � � �; (1)

where � is the level spacing inside the ring, � is the
tunneling rate. Our findings are summarized in Fig. 1.
The evolution ofGð�Þ with increasing interaction constant

� is governed by two effects specific to the single-channel
setup: (i) the destructive interference at � ¼ �0=2, inher-
ited from the noninteracting problem [6], and (ii) a peculiar
type of interaction of electrons with the circular current
inside the ring, which dramatically changes the shape of
the interference pattern (Fig. 1).
The physics behind this behavior can be outlined as

follows. The interplay of (i) and (ii) manifests itself already
in an isolated ring. The interaction with the persistent
current J (quantized due to charge quantization) leads to
a shift ��J / �J of the effective flux acting on electrons.
This results in the interference-induced blocking of the
tunneling current through the ring for specific values of
� determined by the quantized values of J. We call this
phenomenon persistent-current blockade (PCB).
In a tunnel-coupled ring, the circular current J is no

longer strictly conserved. Its dynamics (‘‘zero-mode fluc-
tuations’’) is responsible for both the peculiar shape of
Gð�Þ and the AB dephasing. The novel type of
interaction-induced oscillations of Gð�Þ that we predict
[Fig. 1(c)]—with a distance between minima controlled by
�—arises as a series of the PCB antiresonances, each of
which corrresponds to one of the quantized values of J.

FIG. 1. Schematic evolution of Gð�Þ with increasing inter-
action strength. (a) � � ð�2=�TÞ1=2: a single deep anti-
resonance at half-integer flux through the ring;
(b) ð�2=�TÞ1=2 � � � �T=�2: suppression of the antireso-
nance; (c) � � �T=�2: breaking up of the antiresonance into
‘‘persistent-current blockade’’ oscillations. For fixed �, the
evolution with increasing T follows ðaÞ ! ðcÞ ! ðbÞ.
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The PCB oscillations—in contrast to the Coulomb-
blockade oscillations [1]—survive thermal averaging at
large T but are suppressed by dephasing. As shown below,
the dominant mechanism of dephasing in a single-channel
ring is provided by thermal fluctuations of the circular
current (which translates into fluctuations of ��J). Our
main result for the dephasing rate is

�’ ¼ 4�T=�: (2)

The dephasing is strongly affected by quantization of
charge inside the ring: �’ is seen to vanish for � ! 0.

Another remarkable feature of �’ is that it does not depend

on the interaction strength [7]. We stress that this zero-
mode dephasing is qualitatively different from dephasing
in the much better studied electronic Mach-Zehnder inter-
ferometer [8], where for nonchiral arms the dephasing rate
is given by the single-particle decay rate in a homogeneous
LL (� �2T for spinless electrons [9–11]).

Let us specify the model. Since we are interested in the
regime T � �, where � is the ultraviolet cutoff (e.g., the
Fermi energy), we linearize the electron dispersion relation
around the Fermi level [3]. The Hamiltonian reads H ¼
Hring þHtun þHleads, where (@ ¼ 1)

Hring ¼
X
�

Z L

0
dx

�
�i�vc y

�Dxc � þ 1

2
V0n̂�n̂��

�
(3)

describes the isolated LL ring (Dx ¼ @x � 2�i�=L, � ¼
�=�0). In this Letter we focus on the case of spinless
electrons. The index � ¼ � denotes electrons moving
clockwise (þ) and counterclockwise (�), L is the circum-
ference of the ring, V0 the zero-momentum Fourier com-
ponent of the interaction potential, n̂� ¼ :c y

�c �: the

density in the channel �. We assume that the Coulomb
interaction is screened by a ground plane and take the
interaction to be pointlike. The repulsion between elec-
trons with the same � is then accounted for completely in
the renormalization of the velocity v [10]. We characterize
the interaction strength by the parameter � ¼ V0=2�v.

The tunneling termHtun ¼ t0½c y
Lc ð0Þ þ c y

Rc ðL=2Þ� þ
H:c:, connects the electron operators c R (c L) in the right
(left) lead at the points of the contacts and c ðxÞ ¼
cþðxÞ þ c�ðxÞ. The tunneling occurs at x ¼ 0 and L=2,
so that the arms of the interferometer are of the same
length. We consider a symmetric setup with both contacts
having the same tunneling rate �0 ¼ 8�jt0j2�=L, where �
is the (structureless) density of states in the leads at the
points of the contacts. Here we assumed that the leads are
noninteracting and ballistic; the exact form of Hleads de-
scribing the leads is then of no importance.

In the absence of interaction, the transmission coeffi-
cient Tð�;�Þ through the tunnel-coupled ring shows a
resonance [6] each time the energy � is close to one of
the eigenenergies �n� ¼ ðn���Þ� of an isolated ring.

At zero T this yields a double resonance inGð�Þ [6]. In the

LL ring at T � �, the AB resonances are affected by
Coulomb blockade and spin-related effects [12–15].
What does not seem to have been generally appreci-

ated in the literature is the behavior of the ‘‘noninter-
acting’’ Landauer conductance G0ð�Þ ¼ ðe2=2�Þ�R
d�ð�@�fÞTð�;�Þ in the limit of high temperature T �

� (f is the thermal distribution function). Of special inter-
est are the points of degeneracy between levels of different
chirality � that occur at integer and half-integer values of
�. At � ¼ 1=2 (which corresponds to the crossing of
levels of different ‘‘parity’’),

G0ð�Þ ¼ e2�0

2�

cos2ð��Þ
cos2ð��Þ þ ð��0=2�Þ2

(4)

exactly vanishes. At �0 � �, the high-T conductance
exhibits a sharp (anti)resonance [Fig. 1(a)] [16]. By con-
trast, the interference contribution vanishes at integer �,
where G0ð�Þ is featureless.
To obtain this behavior in a way that is convenient for

introducing interaction, let us write Tð�;�Þ ¼ jtþð�;�Þ þ
t�ð�;�Þj2, where t� is the transmission amplitude of
electrons injected into the c� mode. Returns of electrons
to the tunneling contacts described by a 3� 3 Smatrix are
accompanied by changing chirality. Importantly, at � ¼
1=2, for each path contributing to tþ there exists a ‘‘mir-
rored’’ path (with � ! �� on each segment) whose con-
tribution to t� has an opposite sign. It is this destructive
interference that leads to the vanishing [6] of Tð�;�0=2Þ
for arbitrary �. More specifically, at high T � �, only the
products of amplitudes corresponding to paths of equal
length (but with an arbitrary sequence of chiralities) are
not suppressed by thermal averaging. The conductance can
then be written as a sum over the winding numbers n � 0.
A delicate point here is that one cannot neglect backscat-
tering inside the ring at the tunneling contacts even if �0=�
is small. Doing so would give G0ð�Þ / P

njAþ
2nþ1 þ

A�
2nþ1j2, where A�

k ¼ ei�k��ð1þ ��0=2�Þ1�k is the am-

plitude that preserves the chirality of the injected wave
(below �A�

k is its complex conjugate). This expression con-

tains sharp resonances both at � ¼ 0 and at � ¼ 1=2. In
fact, however, the effect of backscattering is strongly en-
hanced by multiple returns and leads to G0ð�Þ /P

n�½jA�
2nþ1j2 þ ðA�

2nþ1
�A
��
2nþ1 � A

�
2nþ2

�A
��
2nþ2Þ=2�. It is

seen that the backscattering removes the resonance at � ¼
0 while not affecting the resonance at � ¼ 1=2.
Our purpose here is to understand how the shape of the

AB resonance (4) changes when e-e interactions are turned
on. Making use of the scale separation (1), we first inte-
grate out all energy scales larger than T, which takes into
account the virtual processes [17] that yield the LL renor-
malization of the model. The main outcome is the renor-
malization of the tunneling rate: �0 ! �ðTÞ; in particular,

�ðTÞ � �0ð�=TÞð1�KÞ2=2K for � � �0=� [18], where K ¼
ð1� �Þ1=2ð1þ �Þ�1=2 is the Luttinger constant. Note that
at T � � two contacts are renormalized independently.
Another consequence is that the velocity of single-particle
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excitations [10] becomes equal to the plasmon velocity

u ¼ vð1� �2Þ1=2 (the level spacing is now � ¼
2�u=L). Next, we employ the quasiclassical approxima-
tion—justified for T � � and � � 1—in which the effect
of e-e interactions on the single-particle transmission am-
plitudes is described in terms of scattering on the thermal
electromagnetic noise created by the bath of other
electrons.

It is instructive to first consider the bath with the total
number N� of electrons in the channel � being a quantum

number. For a linear dispersion relation, the peculiarity of
the single-channel ring is that at � ¼ 0 the density profile
n�ðxÞ for given � remains unchanged and rotates as a

whole. The forward scattering of electrons of chirality �
is then fully accounted for through the phase they ac-
quire in the time-dependent potential U�ðx; tÞ ¼
V0n��ðxþ�utÞ. In particular, the quasiclassical ampli-

tude of the transition from x ¼ 0 to x ¼ L=2 without

winding around the hole is given by A
�
1 ¼ expfi���þ

iV0

RL=2u
0 dtn��½xðtÞ þ�ut�g. A crucial point is that, even

though the time integration is taken over the half-period,
for xðtÞ ¼ �ut the integral is insensitive to a particular
profile of n�� and only depends on N��. Clearly, this

holds true for the amplitude with an arbitrary winding
number n. As a result, the interference term in the con-
ductance,

Aþ
k
�A�
k ¼ expf2�ik½�� �ðNþ � N�Þ=2�g; (5)

is not suppressed by thermal averaging over fluctuations of
n�ðx; tÞ at fixed N� (it is this averaging that is responsible
for the exponential decay of single-particle excitations in
an infinite LL). In other words, plasmons in the isolated
ring do not lead to any dephasing in our symmetric setup.

It follows from Eq. (5) that, apart from the renormaliza-
tion of � and �, the only effect of the interaction of
electrons tunneling through the ring with the bath charac-
terized by fixed N� is the effective shift of the flux

��J ¼ ��J�0=2; (6)

where J ¼ Nþ � N� is the (dimensionless) persistent cur-
rent circulating inside the ring. Physically, the phase shift
(6) between two interfering waves stems from the absence
of e-e scattering within the same channel � (‘‘Hartree-
Fock cancellation’’ [10]). In effect, for given J, electrons of
opposite chirality see different electrostatic potentials,
which translates into the phase difference in Eq. (5).
Being inserted in Eq. (4), ��J yields a shift of the AB
resonance: the PCB occurs at � ¼ 1=2� ��J=�0; in
other words, the persistent current completely blocks the
tunneling current through the ring at this value of �.

For a thermodynamic ensemble of the ‘‘isolated baths,’’
the conductance [Eq. (4)] should be averaged over the
Gibbs distribution of the zero-mode energies [19,20],

�NþN� ¼ ð�=4KÞ½ðN � N0Þ2 þ K2ðJ � 2�Þ2�; (7)

where N0 is controlled by the chemical potential and N ¼
Nþ þ N� is the total number of electrons in the ring.
Equation (7) describes, quite generally, electrostatics of a
1D ring. The resulting conductance as a function of �
shows PCB oscillations with a period � and a Gaussian

envelope whose width wT ¼ �ðT=�Þ1=2 is entirely deter-
mined by the statistical weights of different values of J.
Taking into account the ergodic tunneling dynamics

of the electron bath, i.e., the time dependence of the
circular current, leads to PCB oscillations in a single ring
[21]. In contrast to the isolated ring, each PCB resonance
acquires a width induced by a finite lifetime of the state
with given J. Importantly, this time is much shorter than
the single-electron tunneling lifetime ��1. Indeed, the time
scale for changing J by unity is given by ��1 divided by
the number of levels T=� that participate in the tunneling
dynamics. We identify the interaction-induced broadening
of the PCB resonances with dephasing [Eq. (2)].
For a quantitative analysis of Gð�Þ, we average the

product of the amplitudes in Eq. (5) over realizations of
JðtÞ. This gives the interaction-induced action SðtnÞ, where
tn ¼ 2�ðnþ 1=2Þ=� for the winding number n:

e�SðtÞ ¼
�
exp

�
�i��

Z t

0
dt0½Nþðt0Þ � N�ðt0Þ�

��
: (8)

We now represent N� ¼ P
jn

�
j as a sum over individual

energy levels inside the ring [22]. The time evolution of the
occupation numbers n�j ¼ 0, 1 is telegraph noise with the

rates �fj and �ð1� fjÞ for scattering ‘‘in’’ and ‘‘out’’,

respectively, where fj is the distribution function in the

leads at the energy of the jth level. The phase factor
induced by the interaction with the jth level is written as
(here we suppress the indexes j and � for brevity) [23]:

hei��
R

t

0
dt0nðt0Þi ¼ ð1� fÞðP00 þ P01Þ þ fðP10 þ P11Þ;

where PklðtÞ satisfy the master equation _Pkl ¼ ð�1Þl �
f½�ð1� fÞ � il���Pk1 � �fPk0g and the initial condition
Pklð0Þ ¼ �kl (k and l are the initial and final occupation

numbers, respectively). Solving this equation we get SðtÞ¼
�2Re

P
j ln½ðe	

þ
j t	�

j �e	
�
j t	þ

j Þ=ð	�
j �	þ

j Þ�, where 	�
j ¼

	� i��fj � ð	2 þ i���fjÞ1=2 and 	 ¼ ði��� �Þ=2.
The interference term �Gð�Þ ¼ Gð�Þ �Gð0Þ is affected
by the action (8) (below �� ¼ �� 1=2):

�Gð�Þ
Gð0Þ ’ � 2��

�

X1
n¼0

cosð2���tnÞe��tn�SðtnÞ: (9)

For � � �=�, the sum (9) is cut off by SðtÞ at tn �
��1, so that we can expand SðtÞ in �. The action at � ¼ 0 is

given by the thermodynamic average e�S0ðtÞ ¼
he�i�J�tiGibbs over the zero-mode energies (7) and yields
PCB resonances with different J. For T � �, S0ðtÞ ’
�2T�ft2g where f	 	 	g denotes a periodic continuation in
t from the interval ��=��< t < �=��. The linear-in-�
term,
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S1ðtÞ ’ 4�T

�

ðtÞ

�
tcos2

�
��t

2

�
� sinð��tÞ

��

�
(10)

with 
ðtÞ ¼ ��ftg= sinð��tÞ, is responsible for the de-

phasing. For � � ð�=TÞ1=2, the sum in Eq. (9) can be
replaced by an integral. The latter is dominated by the
vicinity of the points t ¼ 2�m=�� with integer m � 0,

where e�S0ðtÞ is sharply peaked. At these points form � 1,
S1ðtÞ ’ �’t with the dephasing rate �’ given by Eq. (2).

The interference term then reads:

�Gð�Þ
Gð0Þ ’ Im

ð�=2wT�Þ expð��2
�=w

2
TÞ

sin½�ð�� þ 2i�’=�Þ=�� : (11)

If �� � �’, Eq. (11) yields well-separated Lorentzians

[24] [Fig. 1(c)] of width ��=�, centered at integer ��=�.

Note that, despite the appearance of the PCB fine struc-
ture, the exact period in � remains unity, as it should be.
In the opposite limit, �� � �’, the broadening of the

resonances is larger than the distance between them, so
that they merge into a single Gaussian dip of width wT

[Fig. 1(b)]. Equation (11) describes the physically most

transparent case of not too large � � ð�=TÞ1=2, which
means that the width wT of the envelope of the PCB
resonances is much smaller than the period of the AB
oscillations. At larger �, additional features appear, in
particular, related to a possible commensurability between
��J and �0—these will be considered elsewhere [18].

It is worth noting that the tunneling broadens also the
plasmon levels inside the ring, which introduces an addi-
tional contribution �p

’ to the dephasing rate. Averaging the
amplitudes A�

k over fluctuations of n�½xðtÞ� that occur on
the time scale of ��1, we find �p

’ � �2�T=�. It follows
that for �=� � � � 1 the dephasing due to the non-
Gaussian zero-mode fluctuations of JðtÞ is much stronger
than that induced by plasmons.

In conclusion, we have demonstrated that e-e interac-
tions lead to profound and unusual effects in transport
through a single-channel quantum-ring interferometer tun-
nel coupled to the leads, originating from the phenomenon
of persistent-current blockade. We have shown that the AB
conductance Gð�Þ exhibits a series of sharp resonances
broadened by dephasing, the distance between which is
controlled by the interaction strength. We have calculated
the main contribution to the dephasing rate, which is due to
tunneling-induced fluctuations of the circular current. The
physics described in the Letter remains intact for spinful
electrons and ballistic systems with a small number of
conducting channels. Our predictions can thus be verified
by measuring the conductance of a semiconductor nanor-
ing or a single coil of carbon nanotube.
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