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A three-dimensional phase-field approach to martensitic transformations that uses reaction pathways in

place of a Landau potential is introduced and applied to a model of Fe3Ni. Pathway branching involves an

unbounded set of variants through duplication and rotations by the rotation point groups of the austenite

and martensite phases. Path properties, including potential energy and elastic tensors, are calibrated by

molecular statics. Acoustic waves are dealt with via a splitting technique between elastic and dissipative

behaviors in a large-deformation framework. The sole free parameter of the model is the damping

coefficient associated to transformations, tuned by comparisons with molecular dynamics simulations.

Good quantitative agreement is then obtained between both methods.
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Nanoscale materials that undergo martensitic transfor-
mations (MT) bear the promise of an exceptional techno-
logical revolution [1]. MTs are displacive structural
transitions associated to large inelastic strains, that occur
under temperature or loading changes, from a high- (aus-
tenite) to a low-symmetry state (martensite) declined in a
number of ‘‘variants’’ [2], of time scale down to subnano-
second order [3,4]. Bulk MTs in large samples lead to
complex microstructures, due to competing long-range
elasticity, and crystallographic constraint on variants [2].
Kinetics of MTs has been investigated at small scales by
molecular dynamics (MD) (e.g., [5]), whereas continuum-
mechanics-based phase-field (PF) models [6,7] must be
used for large sizes and simulation durations.

The unsolved issue addressed in this Letter consists in
seeking quantitative agreement between PF, and MD in its
operative range of size and time scales, in a time-
dependent setting. We focus on the illustrative case of
strain-driven transformations near 0 K in a stoichiometric
(ordered) Fe3Ni alloy stable at low temperatures only [8,9],
that undergoes a proper (i.e., with no shuffling) austenite
�ðfccÞ ! martensite �ðbccÞ transformation along a path of
homogeneous deformation of the unit cell. Consistently
benchmarking PF calculations by MD simulations requires
adjusting the PF model using the empirical potential of the
simulations, instead of more accurate first-principles meth-
ods (e.g., [10]). Disregarding magnetic degrees of freedom,
we use a Meyer-Entel EAM potential developed to inves-
tigate the phase diagram of the MT transition in FexNi1�x

alloys [3,9] (but see also [10]).
In the PF method for proper MTs, the nonrelaxed

Helmholtz energy density has been modeled by a Landau
potential for the total strain. Levitas et al. recently ex-
tended this formulation to large strains, using a vector
order parameter � associated to a Landau potential that
describes the transformational part of the strain [7].
However, due to group-subgroup relations in the lattice
symmetry point group (PG), the fcc ! bcc transformation
is reconstructive [11]. That is, once a martensite variant is

reached from the parent phase, different austenite variants,
among which the original one, can be reached in turn from
the martensite (Fig. 1). Repeatedly applying PG transfor-
mations thus implies considering an infinite set of variants.
Landau theory is then inapplicable, though a theory with
noncommensurable order parameter can be used [11].
In this context, as a simple alternative to using Landau

potentials, we introduce a PF approach based on reaction
pathways (PF-RP). The RP is a minimum-energy path that
links two (meta)stable states via a saddle point (e.g., [12]).
Consider two states, austenite (A) and martensite (M), of
deformation gradients F � Iþ ru ¼ FA;M (I is the iden-
tity and u is the material displacement) with respect to an
arbitrary reference state, which are local energy minimiz-
ers with associated elastic moduli tensors CA;M, computed
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FIG. 1 (color online). Left: cycling transformations austenite
A ! martensite M ! A, etc., produces in strain gradient (F)
space an infinite backbone of preferred RPs for the transforma-
tional strain Ft. However, Ft can depart from it during out-of-
path transitions. Right: Inelastic energy along the line (dash) that
minimizes the distance between two nonconnected pathways, in
a hypothetic pathway arrangement chosen for ease of represen-
tation (top). The role of � and n are emphasized, inelastic

energies on pathways ~fðkÞin ð�kÞ, constant in this case, being set

to 0. The parameter � scales the barrier energy, taken propor-
tional to the distance between RPa, and n is an empirical shape
parameter (bottom), see Eqs. (3) and (4). Thus, direct transitions
between remote RPs are inhibited.
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by molecular statics (MS). Although the actual path might
slightly differ [12], we approximate the RP between these
states by optimizing over volume [13] along a Bain path [2]
FBðsÞ ¼ sFA þ ð1� sÞFM, where 0 � s � 1 is a path co-
ordinate. Thus along the RP, the Helmholtz energy density

is ~fðsÞ ¼ mink>0f
MSðkFBðsÞÞ where fMS is the energy

density from MS, associated to the deformation gradient
~FðsÞ ¼ kðsÞFBðsÞ where kðsÞ is the volume-minimizing
factor. To comply with crystal symmetry, this first RP is
duplicated and rotated for any rotations R of the austenite
and martensite point groups (PG). Because of the high
symmetry of the considered phases, only 3 of the 24

possible rotations lead to new RPs (e.g., rotations Rh100i
90

� ,

Rh010i
90

� , Rh001i
90

� for austenite, Rh110i
90

� , Rh1�10i
90

� , Rh001i
90

� for one of

the first martensites, [2]). As a substitute for the Landau
potential of the total strain, we gather these RPs in a
backbone construct for the potential. Limiting ourselves
to moderate deformations (up to 50%), we consider only
the first 21 variants [13]. The reference state is the austenite
denoted by fcc where FA ¼ I. This backbone captures the
most important information about energy barriers.

Quite generally, ~fðsÞ embodies the elastic energy near its
minima s ¼ 0, 1, so that s is not exclusively related to
transformational behavior. To deal with a large-
deformation theory where Landau-like parameters are as-
sociated to a transformational strain [7], we adapt a small-
strain procedure (introduced in [14] and discussed in [15])
allowing one to derive a transformation-related potential
that excludes linear-elastic energy. An internal transforma-
tion variable � (the phase field) is introduced by defining

the transformational gradient along the RP to be ~Ftð�Þ �
~Fðsð�ÞÞ, where the function �ðsÞ that provides by inversion
the relationship s ¼ sð�Þ in this definition must be deter-
mined. Adopting the usual large-deformation multiplica-
tive composition law, define the elastic gradient as

Feðs; �Þ ¼ ~FðsÞ � ~F�1
t ð�Þ, and write the energy density

along the RP in the alternative form

fðs; �Þ ¼ 1
2Eeðs; �Þ: CðsÞ: Eeðs; �Þ þ finð�Þ: (1)

The first term is an elastic energy expressed using the
Green-Lagrange elastic strain Ee ¼ 1

2 ðFT
e � Fe � IÞ, and

fin is the inelastic energy of the RP [14]. To avoid brutal
elastic variations, the elastic tensor C is made s dependent
along the path and taken as a cubic interpolation between
CA;M with C0ðsÞ ¼ 0 at both ends [7]. Functions finð�Þ and
�ðsÞ are then obtained by imposing an exact equality

between ~fðsÞ and fðs; �Þ in a relaxed state where � is
adiabatically eliminated [15], which yields the necessary
equations to be solved numerically:

~fðsÞ ¼ fðs; �Þ; @�fðs; �Þ ¼ 0: (2)

Similarly, a mechanism whereby a phase strain can leave a
RP to rejoin a neighboring one has to be added [7]. A
transformation gradient Ft outside RPs is introduced as a
generalized internal variable and is associated to a new

potential. Keeping in mind that this potential corresponds
to transient states between two arbitrary RPs (i.e., fin
should be a function of Ft), the energy to be added to
~fðkÞin ð�kÞ is simply chosen as proportional to the distance

dkðFtÞ ¼ min�jFt � ~FðkÞ�1
t ð�kÞ � Ij from the kth RP,

where jAj ¼ ðAijAijÞ1=2 (Fig. 1, left). The contribution

for one RP introduces one parameter� (to be fitted by MS)

fðkÞin ðFtÞ ¼ ~fðkÞin ð�kÞ þ �dkðFtÞ; (3)

where �k is the argmin in dkðFtÞ, a rotation-independent
(i.e., objective) function.
For the complete pathway tree, the overall inelastic

energy is an interpolation between potentials

finðFtÞ ¼
X

k

wkðFtÞfðkÞin ðFtÞ; (4)

with a partition of unity wk chosen so that a RP dominates
its immediate surrounding, i.e., wk ¼ 1 for Ft near the
ðkÞth RP. A simple and convenient choice is to use a
function of the distance dk defined above: wk ¼
d�n
k =

P
id

�n
i with n > 0 controlling the transition between

pathways. Whereas n ! 1makes fin switch to the nearest
RP, best agreement with MS is obtained using n � 2,
which provides smoother transitions (Fig. 1, right; see
also [16]). The full potential now reads

fðF;FtÞ ¼ 1
2EeðF;FtÞ: CðFÞ: EeðF;FtÞ þ finðFtÞ; (5)

where CðFÞ is interpolated from the CðskÞs, using an

equation similar to Eq. (4), with dkðFÞ ¼ minsk jF �
~FðkÞ�1ðskÞ � Ij to define sk. Along RP k, we have wk ¼
1 and wi�k ¼ 0, and Eq. (5) is equivalent to Eq. (1). For
transition between pathways, the energy barrier is propor-
tional to the distance between RPs, which naturally inhibits
unphysical transitions between ‘‘distant’’ variants (Fig. 1,
right). This approach is quite different from the interpola-
tion scheme used in [7] and, we believe, simpler to handle,
at least for reconstructive transformations involving an
extended reaction tree.
By construction, linear-elastic energy is removed from

finðFtÞ which, apart from small nonlinear elastic contribu-
tions, describes the nonconvex (unstable) part of the energy
along the RP [15]. Hence, damping can be prescribed for
Ft while leaving linear-elastic wave dynamics undamped.
With f given by (5), Ft follows by hypothesis a time-
dependent Ginzburg-Landau kinetics of parameter �:

_F t ¼ ���1@Ft
fðF;FtÞ: (6)

In � are lumped dissipation mechanisms such as vibra-
tional or magnetism entropy [17], nonlinear acoustic
waves, as well as couplings to inessential lattice degrees
of freedom that were adiabatically eliminated when com-

puting ~fðsÞ. Finally, the dynamics of u obeys the equation
� €u ¼ r � �, where � is the local density, and where the
Cauchy stress � is related to the first Piola-Kirchhoff stress
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P ¼ @fðF;FtÞ=@F. The model is implemented in a
Lagrangian code using an element-free Galerkin (EFG)
formulation [18] in total strain, with explicit time integra-
tion in a form able to handle acoustic wave propagation
and rapid phase changes [19]. This least-square formula-
tion of EFG produces smooth fields for u and Ft with no
pinning at interpolation nodes. Hence, including an
interface-penalizing (gradient) term in the energy is not
necessary, the same overall effect being obtained by keep-
ing finite the distance between interpolation nodes.
Contrary to � and n, the free parameter � must be fitted
on global simulations.

A benchmark MD simulation is conducted with initial
temperature T ¼ 0 K. An austenitic cube of size L ¼ 30a0
with lattice parameter a0 ¼ 3:64 �A (108 000 atoms) is
deformed with time t � tf, with tf ¼ 80 ps, according to

a time-dependent overall strain �FðtÞ¼Iþðt=tfÞ½�FM1 þ
ð1��ÞFM2 �I� with components of FM1 ¼
ð1:105; 1:105; 0:789Þ and FM2 ¼ ð0:789; 1:105; 1:105Þ and
� ranging from 0.1 to 0.3 to obtain various compounds of
two martensite variants M1;2 in the final configuration.

Periodic boundary conditions (PBCs) are used. At t ¼ tf,

acoustic waves have run 26 times across the sample, which
evenly spreads out perturbations.

For the corresponding PF-RP simulations, node spacing
controls the spatial resolution. A good compromise be-
tween resolution and computational cost is obtained with
27 atoms per interpolation node (4000 nodes) placed in the
same fcc arrangement of that used for MD. Values � ¼
1:9 GPa and n ¼ 2:2 lead to a good reproduction of the
energy between two martensite variants M1 and M2, for
prescribed strains F ¼ �FM1 þ ð1� �ÞFM2 with � rang-
ing between 0 and 0.5 (see [16]).

For PF-RP and MD, F is used to monitor deforma-
tion, and to identify variants. For MD it is ob-
tained from displacements u of neighboring atoms by
least-square optimization. Final states in MD are made of
bands of martensite for � � 0:2 whereas ‘‘chessboard’’-
like structures [20] emerge for � ¼ 0:3. For PF-RP, the
viscosity � controls the final states, a very good match
between MD and PF-RP being obtained with � �
14 mPa s (Fig. 2). Lowering � does not change the final
states, but increasing it turns the bandlike structures into
chessboard (14< �< 60 mPa s), then into a homogene-
ously deformed state (� � 60 mPa s). Phase volume frac-
tions are monitored, see Fig. 3(b). The time to nucleation
(TTN) is delayed by increasing �, best match between MD
and PF-RP TTNs being obtained with again � ¼ 14 mPa s.

This value of � is used in all calculations below. It is
within a factor 	2:5 of Fe and Ni viscosities at their
melting point, 5:8 and 5:4 mPa s, respectively [21]. An
explanation may be that configurational changes associ-
ated to barrier crossing involve large atom motions com-
parable to that encountered on the liquidus (even though
martensitic transformations are nondiffusive), with similar
damping effects.

Analogous chessboard patterns have been observed and
reproduced by PF in connection with diffusive alloy de-
composition [22]. For displacive transformations, these
ubiquitous structures [20] have also been obtained in
two-dimensional PF calculations: very unstable, they are
stabilized in small samples, but decay into more conven-
tional laminateslike structures at large sizes [23]. We make
here a first exploration of this physically important effect in
three dimensions (3D) using PF-RP for an imposed defor-
mation �FðtÞ with � ¼ 0:3. Because of inertial dynamics,
convergence of strains to stable values is limited by wave
propagation. Therefore, the ratio tf=L between simulation

time tf and sample size L must be kept constant to allow

for meaningful comparisons. Taking the size and duration
of the previous calculation as a reference (� ¼ 1), L and tf
are increased by factors � ¼ 2 to � ¼ 7. As deformation
proceeds and for� � 3, the initial austenite goes through a
chessboard state that decays, via an intermediate mixed
structure, to a complex three-dimensional laminate state of
austenite mixed with twin bands of martensite. This se-
quence is illustrated on Fig. 3(a) for the largest size L ¼
210a0 (� ¼ 7) and time tf ¼ 560 ps; see [16] for ani-

mated sequences. Interestingly, for � ¼ 7 variant 3 is
produced at intermediate times and vanishes at the end of
the simulation. Indeed, the prescribed strain �FðtÞ is defined
as an average of initial austenite [strain I, volume fraction
(VF) 1� t=tf], and of the two variants [strain FM1 , VF

�t=tf and FM2 , VF ð1� �Þt=tf]. However, the important

energy gain when martensite forms (�13 meV=atom) fa-
vors larger fractions of both variants 1 and 2. Noting that
the average strain produced by a combination of the three
variants is null, this is balanced by a ‘‘back’’ strain propor-
tional to FM3 inducing the formation of the third variant.
In the final state, the martensite compound forms a two-

dimensional structure more complex than a simple lami-
nate, in which the two possible orientations of twin inter-

FIG. 2 (color online). Comparison of deformation measure
between MD (top) and PF-RP (bottom) for � ¼ f0:1; 0:2; 0:3g
at 80 ps (light: martensite; dark: incompletely transformed
austenite).
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faces consistent with boundary conditions at habitat planes
[2] are simultaneously present. At meeting points of 90�-
related interfaces, these boundary conditions cannot be
satisfied and high elastic strains result. Relaxation occurs
through a moderate formation of ‘‘reversion’’ austenite
(less than 0.05%) of the M1 ! A2 path, see Fig. 1, repre-
sented as (barely noticeable) dark regions in Fig. 3(a),
right. Additional MD simulations and PF-RP calculations
were made, using PBCs with planes rotated by an angle of
5�. This small change inhibits chessboard patterning what-
ever the system size. A laminatelike structure takes place
almost instantaneously without giving rise to any remark-
able intermediate state. This suggests that stable chess-
boards may be difficult to observe experimentally for
displacive transformations, even in small samples.

To conclude, we introduced a dynamic phase-field tech-
nique for martensitic transformations, fully compliant with
crystal symmetries, that alleviates the need for vector
Landau parameters, and obviously adaptative to a variety
of situations. We illustrated it by an application to a model
alloy. The good results obtained, which contrast with the
crude approximations involved in modeling the energy
landscape outside RPs, show that the details of these
‘‘outer’’ regions are most likely inessential to the main
picture and confirm the relevance of a reaction-pathway
approach to these questions. This view is supported by the
agreement found with MD in size and time domains where
both techniques could be compared, with a gain of 2 orders
of magnitude in computational cost in favor of PF-RP.
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FIG. 3 (color online). (a) Intermediate and final microstruc-
tures for � ¼ 7. (b) Volume fraction of variants for small (� ¼
1) and large (� ¼ 7) simulations for MD (dots) and PF-RP (plain
and dashed lines). Simple composition rule between initial
austenite and variants is plotted (black lines). For � ¼ 7, variant
3 appears as an intermediate phase. A small fraction of ‘‘rever-
sion’’ austenite (label A2) is produced at variant angle points.
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