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We show that considering only the largest cluster suffices to obtain a first-order percolation transition.

As opposed to previous realizations of explosive percolation, our models obtain Gaussian cluster

distributions and compact clusters as one would expect at first-order transitions. We also discover that

the cluster perimeters are fractal at the transition point, yielding a fractal dimension of 1:23� 0:03, close

to that of watersheds.
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Percolation, the paradigm for random connectivity, has
since Broadbent and Hammersley [1] been one of the most
often applied statistical models [2,3]. Its phase transition
being related to magnetic models [4] is in all dimensions
one of the most robust second-order transitions known.
This explains the enormous excitement generated by the
recent work by Achlioptas, D’Souza, and Spencer [5]
describing a stochastic rule apparently yielding a discon-
tinuous percolation transition on a fully connected graph.
Subsequent work applied the process on other networks
[6–11]. However, reported results of finite-size studies and
size distributions are not consistent with a first-order tran-
sition. Since then, various rules have been devised [12–14]
and even a Hamiltonian formalism was proposed [15], all
attempting a discontinuous transition towards an infinite
cluster. In all proposed models, one tries to keep the
clusters of similar size, and some authors additionally
suppress the internal bonds of clusters [5,15]. Could one
obtain a clear and consistent first-order percolation tran-
sition? It is the objective of the present Letter to answer this
question. One criterion is the cluster size distribution at the
percolation threshold. Radicchi and Fortunato [9] as well
as Ziff [7] found a power-law distribution with an exponent
close to 2. Although different from the exponent of classi-
cal percolation, the sole fact of finding a power law is
untypical for first-order transitions. Also unusual for a
first-order transition is that the clusters are fractal, as we
found happens for the Achlioptas rule, from the behavior of
the order parameter with the system size [7,9]. It is a
purpose of the present Letter to present a model in which
a Gaussian cluster size distribution and compact clusters
can be achieved in a systematic way, characterized by a
fractal perimeter yielding a fractal dimension similar to the
one of watersheds and random polymers in strongly dis-
ordered media.

Usual bond percolation can be implemented on a square
lattice by randomly occupying bonds between neighboring
sites, reaching its threshold at a certain fraction when
opposite borders are first connected through one large
cluster [2,16,17]. This percolation threshold is character-

ized by the continuous vanishing of the order parameter,
i.e., a second-order transition. On a fully connected graph,
Achlioptas, D’Souza, and Spencer [5] used the best-of-two
product rule studied in detail by Friedman and Landsberg
[12]. Ziff reported simulations on a regular square lattice
[6,7], while Radicchi and Fortunato [8,9] and Cho et al.
[10] reported on scale-free networks.
More recently, other approaches have been introduced to

obtain explosive percolation. Instead of a best-of-two rule,
Manna and Chatterjee [13], Cho, Kahng, and Kim [11],
and Moreira et al. [15] proposed a weighted rule where
bonds are occupied according to a certain probability.
However, despite being rejection-free schemes, they are
limited to small-system sizes and/or a reduced number of
samples. Here we suggest an acceptance method where
new bonds are selected randomly and occupied according
to a certain weight yielding, for the first time, a clear first-
order transition. The considered scheme allows one to
consider system sizes 64 times larger than before [13];
specifically, we consider systems of 40962 sites and aver-
ages over 104 samples.
In our simplest rule (‘‘largest cluster model’’), as for

classical bond percolation, a link is randomly selected
among the empty ones. If its occupation would not lead
to the formation or growth of the largest cluster, it is always
occupied; otherwise, it is occupied with probability
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where s is the size of the cluster that would be formed by
occupying this bond and �s the average cluster size after
occupying the bond. The parameter � controls the allowed
size dispersion. Note that, for � � 0, since the size of the
largest cluster is always greater than (or equal to) the
average cluster size, all new bonds are occupied reducing
to classical bond percolation, characterized by a continu-
ous transition at the percolation threshold [2]. For �> 0,
the probability of Eq. (1) suppresses the formation of a
cluster significantly larger than the average, inducing a
homogenization of cluster sizes. The Gaussian function
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has been considered because this is what we expect for the
cluster size distribution at a first-order transition. However,
to observe a discontinuous transition any other function
could be chosen, as long as it constrains the largest cluster
differing significantly, in size, from the average cluster.

For nonequilibrium problems, where a free energy can-
not be defined, transitions can still be classified based on
the behavior of the order parameter [18]. A first-order
transition is characterized by a jump in the order parame-
ter; otherwise, a transition is denoted as continuous. For
percolation, we define as order parameter the fraction of
sites in the largest cluster (P1) [2]. Here we also consider
two other quantities: the second moment of the cluster size
distribution (�), defined as

� ¼ X
i

s2i ; (2)

where the sum runs over all clusters i, and the standard
deviation (�1) of the largest cluster size (smax) over differ-
ent samples,

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hs2maxi � hsmaxi2

q
: (3)

To estimate the percolation threshold we consider the
average value of p (fraction of occupied bonds) at which
a connected path linking opposite boundaries of the system
is obtained. Considering different system sizes, for � ¼ 1,
we obtain for the percolation threshold pc ¼ 0:632�
0:002. To identify the order of the transition, in the largest
cluster model, Fig. 1 presents a finite-size study for P1, �,
and �1=N, averaged over 104 samples of square lattices
with linear sizes ranging from 32 to 4096. As we can see in
the top inset in Fig. 1, above a certain system size, the order

parameter, at the percolation threshold, does not show any
finite-size dependence, staying at a constant value in the
thermodynamic limit (L ! 1). The second moment of the
cluster size distribution (�) scales with Ld (d ¼ 2), which
is a sign of a first-order transition [19,20]. The standard
deviation of the largest cluster (smax) per lattice site, which
was also considered in Refs. [6,7], converges, for larger
system sizes, to a constant value, corroborating the pres-
ence of a discontinuous transition.
To explicitly control the cluster size distribution, we also

implemented the following model. A new bond is chosen
from the list of empty ones and occupied with probability
given by Eq. (1). For internal connections we consider s as
twice the cluster size. Since Eq. (1) is a Gaussian with

average size �s and size dispersion �s=
ffiffiffiffiffiffi
2�

p
, we denote this

model as a Gaussian model. Note that here the occupation
probability is assigned to all new bonds even when they are
not related to the largest cluster. This not only guarantees
the control over clusters greater than the average, as in the
previous model, but also over the smaller ones. For � ¼ 0,
all bonds have the same probability, and, therefore, the
model reduces to classical bond percolation. For negative
�, the growth of larger clusters is favored in two different
ways: They differ more from the average value and have
more empty bonds than the smaller ones. Yet, for all
negative �, the model recovers the classical universality
class of percolation [2,18].
As an example, for positive �, we present, in Fig. 2, a

size dependence study of the order parameter, the second
moment of the cluster size distribution, and the standard
deviation per site of the largest cluster, for the Gaussian
model, with � ¼ 1, at the percolation threshold, on a
regular square lattice with linear size (L) ranging from
32 to 4096. Results were averaged over 104 samples. We
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FIG. 1 (color online). Size dependence, for the largest cluster
model, of the susceptibility (�), fraction of sites in the largest
cluster (P1), and its standard deviation per site (�1=N) at the
percolation threshold, on a square lattice of linear size (L)
ranging from 32 to 4096. All bonds are occupied with the
same probability except the ones that lead to the formation or
growth of the largest cluster, to which an occupation probability
q is assigned [Eq. (1)] with � ¼ 1. Results have been averaged
over 104 samples.

102

104

106

108

101 102 103 104

L

χ

2.0

10-2

10-1

100

101 102 103 104

L

χ ∞
/N

 0.8

 0.9

 1

 0  2500  5000

L

P ∞

FIG. 2 (color online). Size dependence, for the Gaussian
model, with � ¼ 1, of the susceptibility (�), fraction of sites
in the largest cluster (P1), and its standard deviation per site
(�1=N) at the percolation threshold, on a square lattice of linear
size (L) ranging from 32 to 4096. All bonds are occupied with a
probability given by Eq. (1). Results have been averaged over
104 samples.
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extrapolate, for the infinite system, a percolation threshold
pc ¼ 0:562 44� 0:000 06. As for the largest cluster
model, the density of the infinite cluster does not change
significantly with the system size, the second moment of
the cluster size distribution scales with Ld (d ¼ 2), and the
standard deviation per site of the largest cluster converges
to a nonzero constant. As before, these results imply a first-
order transition.

Figure 3 shows snapshots for four different models of
bond percolation: classical, product rule, largest cluster,
and Gaussian. All figures have been obtained at their
respective percolation thresholds (pc). For classical perco-
lation and for the product rule, clusters of very different
sizes are obtained. In fact, the cluster size distribution is
characterized by a power law [7,9]. However, for the
largest cluster and the Gaussian models, a characteristic
cluster size is observed. Both models lead to a localized
cluster size distribution. Small size dispersion and number
of clusters are observed for the largest cluster model.
According to Eq. (1), increasing the value of � decreases
the size dispersion.

As clearly seen in the snapshots of Fig. 3, clusters
obtained with our models are compact but we find that
the surface is fractal. For the Gaussian model, we calculate
for the cluster perimeter a fractal dimension of 1:23�
0:03, obtained with the yardstick method [21] (Fig. 4).
For the largest cluster model, it is also characterized by a

fractal perimeter with a fractal dimension of 1:26� 0:04
(Fig. 4). Compact clusters with fractal surface were also
reported for irreversible aggregation growth in the limit of
high concentration by Kolb and Herrmann [22]. For the
present models, the percolation thresholds are larger than
the ones from previous models due to the compactness of
the clusters.
In Fig. 5, we see the cluster size distribution Pðs; �Þ for

different system sizes, obtained with the Gaussian model.
Measurements have been performed at the percolation
threshold on a square lattice with 10242, 20482, and
40962 sites and averaged over 104 samples. Three charac-
teristic peaks are observed. In fact, the third peak (around

FIG. 3 (color online). Snapshots of the system, obtained on a
square lattice with 10242 sites, at pc, for four different bond
percolation models, namely, classical [2], Achlioptas product
rule [6], largest cluster (� ¼ 1), and Gaussian (� ¼ 1). The
largest cluster and Gaussian models are introduced in this Letter.
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FIG. 4 (color online). Number of sticks necessary to follow the
perimeter of the infinite cluster as a function of the stick length,
to obtain the fractal dimension of the perimeter with the yard-
stick method for both the largest cluster and Gaussian models,
with � ¼ 1. For the Gaussian model, data were vertically shifted
by a factor of 0.1. Results have been averaged over 104 samples
of lattices with linear size 2048.
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FIG. 5 (color online). Cluster size distribution for the Gaussian
model for different system sizes (� ¼ 1), at the percolation
threshold, on a square lattice, averaged over 104 samples.
Black dashed lines are two Gaussian distributions fitting the
results from simulation. The black solid line is the sum of both
curves.
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0.7) is only due to the largest cluster and appears only due
to the small number of clusters at the percolation threshold,
being a finite-size effect. This peak is not observed when
we compute the same distribution without considering the
largest cluster. In the thermodynamic limit, since an infi-
nite number of clusters exists, the contribution of a single
cluster to the distribution vanishes. The presence of two
main peaks is characteristic for a first-order transition
showing, for a finite system, at the percolation threshold,
coexistence of the percolative and nonpercolative states
[23].

In conclusion, the present work reveals that, to obtain
explosive percolation on a regular lattice, it is sufficient to
control the formation and growth of the largest cluster,
instead of applying a rule to the overall set of empty bonds.
We propose the largest cluster model, which systematically
suppresses the formation of a largest cluster. We introduce
as well the Gaussian model, where a weight is assigned to
each selected bond, such that a Gaussian distribution of
cluster sizes is obtained, revealing the coexistence of two
states at the percolation threshold. Our models, yielding
clear first-order transitions, show that explosive percola-
tion can be obtained under less stringent conditions than
previously thought, shedding light on the minimum ingre-
dients to trigger explosive percolation. In fact, we believe
that our restrictions on the formation of a largest cluster
differing significantly, in size, from the average is the
required necessary condition and hope that this statement
can one day be formally proven. The value of the novel
fractal dimension of percolation that we discovered in the
cluster perimeters is intriguingly close to the one found for
watersheds (1:211� 0:001) [24] and random polymers in
strongly disordered media (1:22� 0:02) [25].
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