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We propose a stability criterion of superfluids in condensed Bose-Einstein systems, which incorporates

the spectral function or the autocorrelation function of the local density. Within the Gross-Pitaevskii-

Bogoliubov theory, we demonstrate the validity of our criterion for the soliton-emission instability, with

use of explicit forms of zero modes of the Bogoliubov equation and a dynamical scaling near the saddle-

node bifurcation. We also show that the criterion is applicable to the Landau phonon instability and the

Landau roton instability within the single-mode approximation.
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Introduction.—Studies of the critical velocity, above
which a superfluid becomes unstable, can trace its history
back to the discovery of superfluidity in 4He [1]. The cri-
tical velocity is determined by either of the following,
whichever yields the smaller critical velocity: the insta-
bility of the excitation spectrum with respect to a flow-
ing superfluid (the so-called Landau instability [2]) or
the emission of topological defects such as quantized
vortices [3,4].

The realization of Bose-Einstein condensation in cold
atoms has renewed interest in this issue. The critical veloc-
ities in cold atoms have been measured by moving a blue-
detuned laser beam in a Bose-Einstein condensate (BEC)
[5–7], where superfluidity was found to break down with
the emission of vortices at the velocities much smaller than
the Landau critical values. Those experimental results [5,6]
are consistent with numerical results of the time-dependent
Gross-Pitaevskii (GP) [8,9] equations [10,11].

From the viewpoint of nonlinear physics, the instability
of superfluidity found in [10,11] was identified as a saddle-
node bifurcation [12,13], where a stable and an unstable
steady solution for the GP equation merge [14]. As a
simpler analog of the vortex-emission instability, the in-
stability of the one-dimensional superflow against a pene-
trable potential barrier has been intensively studied [15–
17] within the GP equation; superfluidity breaks down with
the emission of solitons much below the Landau critical
velocity at a saddle-node bifurcation [15,18].

If we could find a common aspect between the two
different kinds of instability, the Landau instability and
the saddle-node bifurcation, it would provide a crucial
step toward a coherent understanding of various kinds of
instability in superfluids. In this Letter, we focus on dy-
namical density fluctuations (DDFs) and show that the
DDFs of superfluids are enhanced near the critical velocity
in both the Landau instability and the soliton-emission
instability. On the basis of this finding, we propose a
criterion for stability of superfluids [19].

Model.—We quantify DDFs through the spectral func-
tion of the local density, since the dynamical structure

factor, usually denoted as Sðq; !Þ in the literature, is not
appropriate to measure density fluctuations in the presence
of obstacles. The spectral function of the local density is
given by

Iðr; !Þ ¼ X
l

jhljĉ yðrÞĉ ðrÞjgij2�ð!� El þ EgÞ: (1)

Here, jgi is the state vector of the ground state or a stable
superflow state, the energy of which is denoted by Eg. El

denotes the energy of an excited state l. The summation
runs over the excited states.
We consider Bose systems with a short-range repulsive

two-body interaction at zero temperature. The x axis is
taken to be the direction of the supercurrent. We introduce
a penetrable and short-ranged potential barrier UexðxÞ,
which is localized along the x direction around x ¼ 0
(independent of y and z). The shape of the barrier is similar
to that shown in Fig. 1(a) of [20]. We treat the condensate
and excitations within the scheme of the GP [8,9] and the
Bogoliubov [21] equations, respectively. The field operator

is thus given by ĉ ðr; tÞ ¼ �ðrÞ þP
j½ujðrÞâje�i"jt �

v�
j ðrÞâyj ei"jt�. The function�ðrÞ represents the wave func-

tion of the condensate and satisfies the stationary GP
equation:�

�r2

2
þUexðxÞ ��þ j�ðrÞj2

�
�ðrÞ ¼ 0: (2)

The symbols âj and âyj denote, respectively, the annihila-

tion and creation operators of a one-particle state j. The
wave functions ujðrÞ and vjðrÞ of the state j satisfy the

Bogoliubov equation:

L
ujðrÞ
vjðrÞ

� �
¼ "j

ujðrÞ
vjðrÞ

� �
; L� K̂ ��2

ð��Þ2 �K̂

 !
; (3)

K̂ � �r2

2
þUexðxÞ ��þ 2j�ðrÞj2; (4)

andalso satisfy theorthonormal condition
R
dr½ujðrÞu�kðrÞ�

vjðrÞv�
kðrÞ�¼�jk, and

R
dr½ujðrÞvkðrÞ � vjðrÞukðrÞ� ¼ 0.

We have used dimensionless units in (2) and (3).
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In the presence of a potential barrierUexðxÞ, we consider
(2) under the boundary condition

�ðx ! �1Þ ¼ exp½iðVxþ ’�Þ�: (5)

The quantity ’ � ’þ � ’� represents the phase differ-
ence between the two condensates separated by the poten-
tial barrier. V represents the superfluid velocity far away
from the potential barrier. The relation between V and ’
corresponds to the Josephson relation [16,22] and its typi-
cal profile is given, e.g., in Fig. 2 of [16]. For chemical
potential �, the relation � ¼ 1þ V2=2 follows from the
boundary condition (5).

WhenUexðxÞ ¼ U0�ðxÞwithU0 > 0, the following facts
are known from the analysis of Refs. [15,17,18]. (a) The
critical velocity Vc is smaller than the Landau critical
velocity (¼1). (b) When 0 � V < Vc, a stable and an
unstable steady solution to (2) exist. (c) When V ! Vc �
0, the stable and the unstable steady solutions to (2) merge.

As for V > Vc, no steady solutions to (2) with dissipa-
tionless flows exist. When V is slightly above Vc, the
emission of gray solitons is observed in numerical calcu-
lations of the time-dependent Gross-Pitaevskii equation
[15]. When UexðxÞ is a rectangular barrier, a Josephson-
type V-’ relation was also derived in [22]. A rectangular
barrier describes qualitatively generic properties of a pene-
trable short-range barrier. We thus assume the V-’ relation
for a generic short-range barrier to be a Josephson-type
relation, from which (a), (b), and (c) follow.

DDF in the presence of a potential barrier.—The spec-
tral function Iðx;!Þ at low ! is derived via the method
used in [23]: First we find the zero modes of the
Bogoliubov equation (3) and next we obtain the solutions
of (3) in the form of the series with respect to energy. On
the basis of the low energy asymptotics of the matrix
element and the density of excited states, we discuss the
details of Iðx;!Þ at low !.

In the Bogoliubov theory, the spectral function (1) re-
duces to Iðr; !Þ ¼ �jj��ðrÞujðrÞ ��ðrÞvjðrÞj2�ð!�
"jÞ. For simplicity, we first discuss the case d ¼ 1. When

the volume � of the system is sufficiently large, a typical
value �" of the level spacing j"jþ1 � "jj is of the order of
��1. We here introduce a function Mðx;!Þ satisfying

Mðx;!Þ ¼ �j��ðxÞujðxÞ ��ðxÞvjðxÞj2; (6)

when ! ¼ "j for each j. Further, we require that Mðx;!Þ
varies over the energy scale much larger than �", i.e.,

j@Mðx;!Þ=@!j�" � jMðx;!Þj: (7)

In terms of Mðx;!Þ, the spectral function is expressed as

Iðx;!Þ¼Mðx;!Þ��1
X
j

�ð!�"jÞ�Mðx;!ÞDð!Þ: (8)

HereDð!Þ denotes the one-particle density of states for the
Bogoliubov mode, which becomes a constant at low ! for
d ¼ 1 in the thermodynamic limit (� ! 1).

In order to discuss Mðx;!Þ at low !, we first recall that
ðuðxÞ; vðxÞÞt ¼ ð�ðxÞ;��ðxÞÞt � c 0 is a solution of (3)
with zero eigenvalue (zero mode) for V � Vc [24]. Next,
one can verify from the following observation that

ð uðxÞ; vðxÞÞt ¼ ð@�ðxÞ=@’;�@��ðxÞ=@’Þt � c c (9)

is an additional zero mode of (3) at V ¼ Vc [18,23].
Regarding V as a function of ’ and taking the derivative of
(2) with respect to ’, we obtain

Kð@�=@’Þ þ�2ð@��=@’Þ ¼ VðdV=d’Þ�: (10)

This equation and its complex conjugation are put together
as

L c c ¼ VðdV=d’Þc 0: (11)

When V ¼ Vc, V is maximal and hence dV=d’ ¼ 0. The
right-hand side in (11) then vanishes and the proof is
completed.
When V < Vc, the wave function for a state j with a

small "j can be shown to have the form [23,25]

ðujðxÞ;vjðxÞÞt¼ð"j�Þ�1=2fcc 0ðxÞþc"jc 1ðxÞþOð"2j Þg:
(12)

Here c 1ðxÞ is the solution of Lc 1 ¼ c 0, which does not
diverge exponentially at large jxj. When V ¼ Vc, on the
other hand, we have [18,23,25]

ðujðxÞ; vjðxÞÞt ¼ ð"j�Þ�1=2fcc 0ðxÞ þ c0c cðxÞ þOð"jÞg:
(13)

Here c and c0 are constants.
c 0 represents a phase fluctuation [23] and hence does

not contribute to density fluctuations, while c c does [23].
Correspondingly, the matrix element Mðx;!Þ behaves as

Mðx;!Þ ! �Mðx;!Þ �
�
!fðxÞ V < Vc
c02
! j @j�ðx;’Þj2

@’ j2 V ¼ Vc;
(14)

at low !. Here fðxÞ represents the contribution from c 1.
The low! behavior of Iðx;!Þ for d ¼ 1 can be deduced as
�Mðx;!ÞDð!Þ from (8) and (14).
The generalization to d ¼ 2 and 3 is straightforward

as outlined below [26]; we classify the set of the eigenstate
j with the angle � between the wave vector and the
potential wall, and introduceMðx;!;�Þ satisfying (6) and
(7) for j with an angle �. At low !, we can show that
Mðx;!;�Þ becomes independent of � and that it ap-
proaches �Mðx;!Þ. Consequently, Iðx;!Þ ! �Mðx;!ÞDð!Þ
at low !. Since Dð!Þ / !d�1 at low! for the Bogoliubov
mode in dð¼1; 2; 3Þ dimension, we obtain

Iðx;!Þ !
�
!dfdðx; VÞ V < Vc

�d!
d�2j @j�ðx;’Þj2

@’ j2 V ¼ Vc;
(15)

at low !. Here fdðx; VÞ is a function of x and �d is a
constant.
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In (15), we note that the exponent in ! jumps from d to
d� 2 when V approaches Vc from below. This behavior
can be explained by a dynamical scaling relation near the
saddle-node bifurcation [13,18]. Near the saddle-node bi-
furcation, there is a characteristic frequency !�, which
scales as !� / jV � Vcj1=2. In [18], it was shown that the
decay rate � of an unstable steady state slightly below Vc

and the emission rate �0 of a gray soliton slightly above Vc

follow the scaling relations equivalent to �;�0 /
jV � Vcj1=2 [27]. We thus anticipate that!� yields a cross-
over behavior in the ! dependence of Iðx;!Þ near Vc.

Accordingly, we put Iðx;!Þ in the scaling form

Iðx;!Þ ¼ !d�2Fðx;!jV � Vcj�1=2Þ; (16)

where the asymptotic behaviors of Fðx; ~! � !jV �
Vcj�1=2Þ are determined from (15) as

Fðx; ~!Þ !
�
~!2 ~fdðxÞ for ~! ! 0

�dj @j�ðx;’Þj2
@’ j2 for ~! ! 1;

(17)

with ~fdðxÞ ¼ ðVc � VÞfdðx; VÞ. The scaling relation (16)
with (17) shows that Iðx;!Þ is enhanced near V ¼ Vc at
low !. We have confirmed this scaling relation numeri-
cally. Figure 1 shows the scaling plot !2�dIðx ¼ 0; !Þ
versus ~! for UexðxÞ ¼ U0�ðxÞ with U0 ¼ 10 near Vc. We
see that for each dimension, the data for various values of V
near Vc collapse onto a single curve.

In deriving the scaling relation (16) with (17), the fol-
lowing facts were crucial: (I) the zero mode which couples
to density fluctuations exists only at V ¼ Vc and (II) the

characteristic frequency !� scales as jVc � Vj1=2 near the
saddle-node bifurcation. These two facts hold in superfluid
Bose systems where the critical velocity is determined by a

saddle-node bifurcation. We thus expect that a scaling
relation similar to (16) holds also in the case of a superflow
around a disk [10,12,13], where the vortex-emission insta-
bility of superfluids has been identified with a saddle-node
bifurcation.
DDF near the Landau critical velocity.—We next show

that the enhancement of the DDF near V ¼ Vc also occurs
in the Landau instability. To that end, we consider the DDF
near the Landau critical velocity in spatially uniform sys-
tems within the single-mode approximation (SMA) [28].
We assume that the excitation energy "q in the absence of

the superflow (V ¼ 0) depends only on jqj ¼ q and has the
form "q � c1qþ c3q

3 þOðq5Þwith c1 > 0 near q ¼ 0. In

the SMA, "q is related to the dynamical structure factor

Sðq;!Þ for V ¼ 0 via [28]

"q � q2

2SðqÞ ; SðqÞ ¼
Z

d!Sðq;!Þ; (18)

from which Sðq;!Þ � ½q2=ð2"qÞ��ð!� "qÞ follows.

When V � 0, Sðq; !Þ is given by

Sðq; !Þ � ½q2=ð2"qÞ��ð!� "q � VqxÞ: (19)

In spatially uniform systems, the spectral function
Iðr; !Þ ¼ Ið!Þ is related to the dynamical structure factor
via Ið!Þ ¼ ð2�Þ�d

R
dqSðq; !Þ. From this and (19), we

derive Ið!Þ at low ! in the following two cases.
(i) Landau phonon instability. When the Landau insta-

bility occurs near q ¼ 0 for c3 > 0, the Landau critical
velocity Vc is given by the sound velocity c1. Ið!Þ behaves
as

Ið!Þ /
�
!d for ! � !�
!ð2d�3Þ=3 for !� � ! � !l;

(20)

with !��ðc1�VÞ3=2ðc3Þ�1=2 and !l�ðc1�VÞc1=21 c�1=2
3 .

(ii) Landau roton instability. We consider a system
where the single-mode "q has a phonon-roton spectrum

in the absence of V. The critical velocity Vc is determined
by demanding that the condition "q � Vcq ¼ 0 be met for

some wave vector q ¼ qc which lies antiparallel to the
superfluid velocity. Around q� qc, "q � Vcq can be ex-

panded as �qcðVc � VÞ þ �ðq� qcÞ2 with a positive co-
efficient �. Near V ¼ Vc and low !, Sðq; !Þ is given by

Sðq; !Þ � ½q2c=ð2"qcÞ��½!� �ðq� qcÞ2 � qcðVc � VÞ�
þ ½q=ð2c1Þ��ð!� c1qþ VqxÞ: (21)

In the right-hand side, the first and second terms represent
roton and phonon contributions, respectively. As a result,
Ið!Þ at low ! is given by

Ið!Þ � A!ðd�2Þ=2�ð!� qcðVc � VÞÞþ B!d; (22)

where A and B are constants. The symbol � denotes the
Heaviside step function.

FIG. 1 (color online). Scaling relation near the saddle-node
bifurcation for dimensions d ¼ 1, 2, and 3. The scaled spectral
functions Fðx ¼ 0; ~! ¼ !jV � Vcj�1=2Þ ¼ !2�dIðx ¼ 0; !Þ
near the critical current are shown as a function of scaled
frequency ~!. The critical velocity Vc in dimensionless form is
given by Vc ¼ 0:049 753 . . . for UexðxÞ ¼ U0�ðxÞ with U0 ¼ 10.
Circle (red), square (blue), and triangle (green) points are data
for V ¼ 0:049 75, 0.0497, and 0.049, respectively.

PRL 105, 035302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
16 JULY 2010

035302-3



Both (20) and (22) show that the DDFs are enhanced at
low! when the superfluid velocity approaches the Landau
critical velocity.

Stability criterion of superfluids.—The enhancement of
the DDF near the critical velocity is a common aspect
between a saddle-node bifurcation and the Landau phonon
or roton instability. For those kinds of instability, the DDF
of superfluids in d-dimensional BECs is explicitly summa-
rized in the following unified way:

Iðr; !Þ ¼ !�fðrÞ þ I0ðr; !Þ;
lim

!!þ0
!��I0ðr; !Þ ¼ 0 for 8 r;

(23)

where the exponent � satisfies

� ¼
�
�cð<dÞ V ¼ Vc

d V < Vc:
(24)

The function fðrÞ and the exponent �c at V ¼ Vc depend
on the mechanism for destabilizing a superfluid state.

The relation (23) can also be expressed in terms of the
autocorrelation function of the local density. We introduce

‘‘the coarse-grained local density’’ ~nðr; tÞ ¼ R
waðjr�

r0jÞĉ yðr0; tÞĉ ðr0; tÞdr0 in order to avoid the unessential
divergence of the autocorrelation at the short-time limit.
The weight function waðrÞ (with a coarse-graining radius
a) satisfies waðrÞ � 0 for r 	 að>0Þ, and RwaðjrjÞdr ¼
1. The long-time behavior of the autocorrelation function
Cðr; tÞ ¼ h~nðr; tÞ~nðr; 0Þ þ ~nðr; 0Þ~nðr; tÞi=2� h~nðr; 0Þi2 is
determined by the low ! property of Iðr; !Þ and it follows
that for large t,

Cðr; tÞ ¼ t�ð�þ1Þ ~fðrÞ þ C0ðr; tÞ;
lim
t!1t

�þ1C0ðr; tÞ ¼ 0 for 8 r;
(25)

with (24). ~fðrÞ is a function of r. The relation (25) reveals
another aspect of instability of a superfluid state: a quali-
tative change in density correlation in the long-time do-
main is a sign that the system has reached the critical
velocity.

We propose (23) and (25) as new criteria for stability of
superfluids of BECs. The autocorrelation of local density
would be more accessible than the spectral function in
experiments of cold atoms. We thus expect that (25) is
more practically useful than (23).

Conclusion.—We examined the dynamical density fluc-
tuations of superfluids. On the basis of results for the
saddle-node bifurcation and for the Landau instability,
we propose a dynamical criterion for stability of
superfluids.

We thank D. Takahashi, Y. Nagai, M. Kunimi, T.
Minoguchi, S. Sasa, M. Kobayashi, and H. Ohta for useful

discussions. S.W. is grateful to G. Baym for his comments
on the Landau instability. We thank A. Tanaka for his
critical reading of the manuscript. This work is supported
by KAKENHI (21540352) (217751) from JSPS and
KAKENHI (20029007) from MEXT in Japan.

*Present address: Department of Physics, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan;

CREST(JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-

0012, Japan.
[1] J. Wilks, The Properties of Liquid and Solid Helium

(Clarendon, Oxford, 1967); É. Varoquaux, C.R.
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