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Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed

in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration

with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar

MHD energy levels are shown to develop very different geometric structures. The helical equilibrium

states resemble saturated internal kink mode structures.
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The essential confinement of particles and energy in
magnetically enclosed plasmas is described by magneto-
hydrodynamics (MHD). The tokamak is the leading fusion
energy research concept in which the plasma is expected to
be contained in an essentially axisymmetric configuration
with relatively small ripple effects from the finite toroidal
coils. Symmetry of the equilibrium state along the toroidal
coordinate grants the tokamak many appealing properties
such as toroidal mass flow, which is known to reduce MHD
instability and reduce non-MHD transport of particles and
energy, as well as important conservation properties of
single particles, thus enhancing confinement on various
scales.

It is shown in this Letter that despite imposing axisym-
metry (toroidal symmetry) at the edge of the plasma,
enforced by the geometry of the coil system, the preferred
lowest energy state of MHD equilibrium can be nonaxi-
symmetric in the plasma center. The computation of three-
dimensional (3D) helical cores constitutes a paradigm shift
for the description of tokamak equilibria that opens the
way for the application of theoretical and simulation tools
developed for stellarator analysis of MHD stability, guid-
ing center particle orbits, kinetic stability, wave propaga-
tion or heating, neoclassical transport, gyrokinetics, etc., to
determine the impact of these novel 3D states on a large
range of magnetic confinement physics phenomena.

The ignorable toroidal angle coordinate in axisymmetric
magnetic confinement systems allows a simplified descrip-
tion of the MHD equilibrium state through the Grad-
Shafranov equation [1,2]. A more sophisticated approach
invokes the minimization of the MHD energy to achieve an
equilibrium state which can be naturally extended to model
3D systems with the imposition of nested magnetic flux
surfaces and a single magnetic axis [3–9]. Tokamak de-
vices, though nominally axisymmetric, display internal
plasma reorganization phenomena that can break the sym-
metry of the system. In the tokamak à configuration vari-
able (TCV) [10], a transition is observed where core
sawteeth relaxations are replaced by global oscillations
with low poloidal and toroidal mode numbers [11,12]. In

these discharges, the inverse rotational transform q profiles
are nearly flat or slightly reversed. One possible explana-
tion for this transition is that qmin, the minimum value of
safety factor q within the plasma, becomes greater than
unity. Equilibria with qmin near unity are of interest in the
present contribution. Similarly saturated ideal modes in the
MAST device have also been recently reported [13]. The
‘‘snake’’ structures in JET constitute another symmetry-
breaking internal structure triggered by pellet injection. A
theoretical interpretation proposed dealt with pellet depo-
sition in a magnetic island localized at the q ¼ 1 surface
[14]. The reversed field experiment-mod (RFX-mod) de-
vice has detected helical internal structures when the cur-
rent is sufficiently large that quasi-single-helicity (QSH)
structures with a m ¼ 1, n ¼ 7 periodicity form that cor-
respond to the helicity of the most internally resonant mode
of an axisymmetric configuration [15]. These were suc-
cessfully modeled with helical MHD equilibrium states
computed with the VMEC code [8]. Bifurcated equilibria
in a straight Spheromak have also been calculated [16].
Theoretical applications have concentrated on nonlinear

stability evolution and saturation mechanisms to describe
tokamak plasmas. Nonlinear quasi-interchange [17] and
internal kinkmodes, that are evolving slowly [18,19],
have been calculated with hollow and flat q profiles with
q � 1 everywhere. Nonlinearly stable states have also
been determined with the BETAS code [20]. An axisym-
metric equilibrium is computed followed by a second
minimization for stability with a linear constraint imposed.
A nonlinearly stable solution is finally obtained which
differs from the original (axisymmetric in the case of
tokamak studies) equilibrium [21,22]. Solutions were
found for tokamaks and stellarators that correspond to
low order ballooning-type modes that do not alter the
original magnetic axis position.
Energy minimization schemes to determine the equilib-

rium state are based on the first variation of
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where W is the MHD energy, B is the magnetic field
strength, pjj is the plasma pressure parallel to the magnetic

field lines (for isotropic pressure conditions pjj ! p),�0 is

the permeability of free space and � is the ratio of specific
heats. In this study, we have used � ¼ 0 and limited the
calculations to fixed boundary conditions. Specifically, an
axisymmetric elongated D-shaped boundary was chosen
that approximates a configuration readily achievable in the
TCV tokamak [10]. The plasma-vacuum interface is de-
scribed by the Fourier expansion

Rb¼R0þ0:2cosuþ0:06cos2u; Zb¼0:48sinu; (2)

where u is the poloidal angle, Rb is the distance of a plasma
boundary point from the major axis and Zb is the distance
from the midplane. We employ MKS SI units in this work.
For TCV, we take R0 ¼ 0:8 m. Two profiles must be
specified to obtain a MHD equilibrium with scalar plasma
pressure. For simplicity, we prescribe initially the pressure
as pðsÞ ¼ p0ð1� sÞ, where 0 � s � 1 is the radial vari-
able proportional to the normalized toroidal magnetic flux
(the flux divided by its value at the plasma boundary). We
choose p0 such that the volume-averaged plasma h�i ’
0:5%. The second profile we designate is that correspond-
ing to the rotational transform �ðsÞ ¼ 1=qðsÞ.

A bifurcation phenomenon takes place with very flat and
extended or hollow q profiles where qmin approaches unity
such that two MHD equilibrium states exist. The equilib-
rium states are calculated using the ANIMEC code [9] (an
anisotropic pressure variant of the VMEC code [7]), in
which the pressure is prescribed as isotropic. Identical
pressure, rotational transform and plasma boundary are
imposed. The sole difference is the initial guess provided
for the position of the magnetic axis. For the axisymmetric
case, the m ¼ 0, n ¼ 1 Fourier components R01ð0Þ and
Z01ð0Þ are chosen to vanish. Figure 1 shows the magnetic
flux contours on four toroidal cross sections spanning half
of the torus. The cross sectional cuts are identical. For this
particular example, the rotational transform profile is given
by �ðsÞ ¼ 0:9þ 0:2s� 0:8s6. However, choosing as an
initial guess for the magnetic axis position the Fourier
amplitudes R01ð0Þ ¼ �0:08 and Z01ð0Þ ¼ 0:10, we obtain
an equilibrium state that has a 3D helical core as shown in
Fig. 2 with converged values of R01ð0Þ ¼ �0:071 and
Z01ð0Þ ¼ 0:157. This bifurcated equilibrium state has a
slightly lower MHD energy level than that of its axisym-
metric fraternal twin. A dominant m ¼ 1, n ¼ 1 structure
describes the helical core.
A selected set of �ðsÞ profiles are presented in Fig. 3

varying from hollow to very flat, all of which have bifur-
cated equilibrium states (except the dashed curves). We
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FIG. 1. Toroidal magnetic flux surface contours for the axi-
symmetric equilibrium state branch at four different toroidal
cross sections with angles v ¼ 0, �=3, 2�=3, and � in TCV-
like axisymmetric boundary geometry with elongation 2.4, tri-
angularity 0.3, and rotational transform profile �ðsÞ ¼
0:9þ 0:2s� 0:8s6. The equilibrium energy is �0Waxi ¼
1:454 968.
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FIG. 2. Toroidal magnetic flux surface contours for the helical
equilibrium state branch at four different toroidal cross sections
with angles v ¼ 0, �=3, 2�=3, and � in TCV-like axisymmetric
boundary geometry with elongation 2.4, triangularity 0.3, and
rotational transform profile �ðsÞ ¼ 0:9þ 0:2s� 0:8s6. The equi-
librium energy is �0Whel ¼ 1:454 960.
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explore the operational range in which internal helical
structures appear by varying the inverse rotational trans-
form on axis q0, that at the edge of the plasma qb and that
of the minimum value qmin. A good measure of the helical
distortion of the magnetic axis are the converged values of
the m ¼ 0, n ¼ 1 Fourier amplitudes of R and Z on axis.
We first have investigated a sequence of equilibria for
which �ðsÞ ¼ 0:7þ 0:7s� �4s

4 was prescribed, with �4

varied between 1.0 and 1.4 and found internal helical
structures that become larger as qb decreases. However,
as we modify qb, we are actually also changing qmin, so the
relative impact of each variable is not clear. In another
sequence of equilibria we maintain both q0 and qb fixed
and only alter qmin. Figure 4, shows a significant helical
distortion of the magnetic axis when qmin ’ 1 that disap-

pears, reducing to the axisymmetric branch, only when
qmin exceeds 1.034 or is less than 0.95. For the same
sequence explored in Fig. 4, we present the difference
between the energy of the helical state and that of the
axisymmetric state in Fig. 5 showing that the helical bifur-
cated state has lower energy. Nevertheless, the difference
in energy between the two equilibrium states is actually
very small though the distortion to the equilibrium can be
significant as shown in Fig. 4. We would therefore envisage
that transitions back and forth between the axisymmetric
and helical equilibria could easily take place because no
one state has distinctively lower energy (thus is more
stable) than the other, though nonideal effects could alter
this hypothesis.
Experimental observations in TCV indicate that the

pressure profile is flat inside the surface q ¼ qmin with a
steep gradient outside [11,12]. Profiles that satisfy these
characteristics are plotted in Fig. 6, where we vary p0 to
generate a finite � scan. The largest volume-averaged
h�i ’ 3% was obtained with p0 ¼ 4� 104. Interestingly,
the equilibrium state is axisymmetric at low � and devel-
ops a bifurcated helical solution when h�i> 0:7% in
Fig. 7. The helical distortion of the magnetic axis ap-
proaches a magnitude �1=3 of the minor radius at h�i ’
3%. It should be noted that helical states with a different
q profile have been computed at vanishing h�i. Hence, the
dominant factor in the formation of an internal 3D structure
is the current profile and the proximity of qmin to unity,
though finite h�i will also contribute.
In summary, a spontaneous bifurcation phenomenon is

observed in the computation of tokamak magnetohydrody-
namic equilibrium states with a fixed axisymmetric bound-
ary. Under a variety of conditions with either reversed
global magnetic shear in the center of the plasma or a
very flat inverse rotational transform q profile, two equi-
librium states can develop when 0:93 � qmin � 1:05. One
retains axisymmetry, while the other has a three-
dimensional helical core similar to a saturated dominantly
m ¼ 1, n ¼ 1 internal kink mode. Though the energy
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FIG. 4 (color online). The estimate of the helical distortion of
the magnetic axis given by the dominant Fourier components
R01ð0Þ (bottom curve) and Z01ð0Þ (top curve) at the magnetic axis
(corresponding to m ¼ 0, n ¼ 1) is shown as a function of qmin

for a sequence of equilibria with prescribed �ðsÞ ¼ 0:9þ �1s�
ð0:6þ �1Þs6, where �1 is varied between 0.16 and 0.32. In this
sequence, �ð0Þ ¼ 0:9 and �ð1Þ ¼ 0:3 are fixed. The horizontal
line with zero amplitude constitutes the axisymmetric branch.
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FIG. 3 (color online). A selection of inverse rotational trans-
form profiles that yield bifurcated equilibrium states as a func-
tion of

ffiffiffi
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p
. From top to bottom, the � profiles are 0:5þ s�

1:1s4, 0:7þ 0:7s� s4, 0:9þ 0:2s� 0:8s6, and 0:98� 0:7s9

(solid curves). The dashed curves correspond to neighboring �
profiles for which only the axisymmetric branch exists.
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FIG. 5 (color online). The difference between the equilibrium
energy of the helical state and the axisymmetric state as a
function of qmin for the sequence of equilibria described in Fig. 4.
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levels of these bifurcated states are very similar, their
geometric structures become distinctly different. The hel-
ical state can have, just slightly, a lower energy compared
with its axiymmetric counterpart. The helical equilibrium
states are particularly favored when the radial location of
qmin typically exceeds half the enclosed plasma volume for
qb < 3� 4. When qmin � 1:06 or qmin � 0:9, only an
axisymmetric equilibrium is obtained. We therefore predict
that the TCV tokamak with large elongation and flat or
hollow q profiles (with large shear reversal radius) could
acquire a 3D helical core. The existence of these new 3D
equilibrium states within axisymmetric tokamak geometry
opens new research possibilities, in particular, for explain-
ing the radical change of the sawtooth behavior in highly
elongated [11,12] and oval-shaped [23] plasmas, the ro-
bustness of the ‘‘snake’’ structures to internal perturbations
[24] and the ubiquitous appearance of the ideal mode
perturbing MAST discharges [13]. The confinement of
� particles in reactor systems in the presence of internal

helical structures will become a highly relevant issue with
implications for the ‘‘ITER hybrid scenario’’ [25].
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