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An imaging technique is here proposed to overcome the classical ‘‘diffraction limit’’ by using helical

beams. This technique and the analysis presented are valid for all kinds of waves (either optical or

acoustical) as long as the field can be considered as scalar. We show that the stable structure of such phase

singularities turns out to be appropriate to measure both the position and the diameter of subdiffraction

circular apertures. The property used is a shift of the scattered vortex. Its location is obtained with a very

high resolution thanks to a nonclassical correlation method exploiting the superoscillating property of a

vortex near its axis. This theoretical analysis is supported by acoustic experiments performed underwater

evidencing subdiffraction imaging.
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According to the Abbe-Rayleigh criterion, it is well
known that conventional imaging systems with a focal
length F and a diameter aperture D cannot achieve a
resolution beyond the diffraction limit (��F=D) at the
wavelength �. Such a ‘‘physical barrier’’ represents not
only the minimum distance between two distinguish-
able adjacent objects but also the size of the smallest
object that the system can resolve. However, many ap-
proaches proved useful to overcome the diffraction
limit such as hyperlenses recently developed in optics [1]
as well as in acoustics [2]. As noted by Zheludev [3]: ‘‘not
only are superlenses a promising choice: concepts such
as superoscillations could provide feasible alternative.’’
Superoscillations have been proposed by Berry and
Popescu [4]. Helical waves possess this property. Close
to their axis, the field amplitude decreases towards
zero and the phase becomes singular [5]. These screw-
type dislocations [6], studied in singular optics [7], are
also known as optical vortices due to the angular momen-
tum they carry [8] providing optical spanners [9].
Similarly, the acoustical vortices [10] carry a pseudoangu-
lar momentum [11] that can be transferred to matter,
setting objects in rotation [12].

In a transverse plane, the number of jumps of 2�
achieved by the phase on a close contour is called the
topological charge l. The classical features of such struc-
tures are depicted in Figs. 1(a) and 1(b) showing the
amplitude rms and phase for an experimental vortex of
topological charge l ¼ 1. Whatever the radial distance r
from the singularity is, the phase increment for a complete
turn is constant and equal to 2�l as shown in Fig. 1(b).
Consequently, it oscillates increasingly fast by getting
closer to the vortex core without any apparent physical
limits due to evanescent modes, suggesting a superoscilla-
tion phenomenon.

In this Letter, we report a shift of helical waves through
off-axis circular apertures. In optics, the passage of a
vortex core through a perfectly aligned circular aperture
has been considered, reporting the excitation of evanescent
waves once the aperture radius is smaller than l�=2� [13].
In acoustics, a recent study has reported that the vortex
core can be moved in a controlled way by distances much
shorter than the acoustic wavelength by perturbing its
amplitude [14]. Here, the shift of the diffracted vortex
through circular apertures is used to achieve subdiffraction
imaging of such holes with the determination of both their
position and size.
An analytical form of the diffraction of a vortex can be

derived. A monochromatic helical wave can be modeled as
a Bessel wave [15]. In a transverse plane (Ox, Oy) with
polar coordinates x ¼ r cosð�Þ, y ¼ r sinð�Þ, a Bessel wave

X/

Y
/

Amplitude rms

−20 0 20

−20

0

20
0

0.5

1

X/

Phase (rad)

−20 0 20
−3
−2
−1
0
1
2
3

X/

Y
/

Correlation

−20 0 20

−20

0

20

X/

Correlation

−20 0 20

X/

Correlation

−20 0 20
0

0.5

1

(a) (b)

(c) (d) (e)

FIG. 1 (color online). (a) Amplitude rms and (b) phase of an
experimental vortex of topological charge l ¼ 1. Correlation
maps (see the text) obtained with different sizes of matrices of
reference: (c) 3� 3, (d) 9� 9, and (e) 15� 15 points.
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�ðr; �; zÞ is defined by

�ðr; �; zÞ ¼ Jlð�rÞ expðil�Þ expðikzzÞ expð�i!tÞ; (1)

with �2 þ k2z ¼ !2=c2, l 2 Z the topological charge, !
the angular frequency, and c the wave velocity. This model
holds for either optical or acoustical vortices as long as the
field can be considered scalar. We are interested in the
diffraction of the vortex by a small circular aperture lo-
cated close to its core and set at z ¼ 0. In that case, at first
order in r, its asymptotic form is the ‘‘r vortex’’ [6]:

�ðr; �; z ¼ 0Þ ’ 1

l!

�
�r

2

�
l
expðil�Þ expð�i!tÞ: (2)

To compute the diffracted pattern, the convenient coordi-
nate system is centered on the circular aperture x0 ¼ x�
x0 ¼ r0 cosð�0Þ; y0 ¼ y ¼ r0 sinð�0Þ. We choose a set of
axes so that the vortex is misaligned on the Ox axis only
and x0 � a, where a is the radius of the hole. When the
vortex is of charge one, l ¼ 1, the analytical form of the
vortex in the set of axes centered on the circular aperture
is trivial since r expði�Þ ¼ xþ iy ¼ x0 þ x0 þ iy ¼
r0 expði�0Þ þ x0:

�ðr0; �0; z ¼ 0Þ ’ �

2
½r0 expði�0Þ þ x0� expð�i!tÞ: (3)

Consequently, the diffracted field is the superposition of
the diffraction of a vortex centered on the circular aperture
and a plane wave whose amplitude is proportional to the
misalignment x0. Since we are interested in the far field,
the Fraunhofer diffraction will be used.

�ðr0;�0;zÞ¼ �

2i�z
exp½iðkzz�!tÞ�exp
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d�00r00dr00: (4)

By using the integral definition of the Bessel functions, the
last equation can be rewritten:

�ðr0; �0; zÞ ¼ ��

i�z
exp½iðkzz�!tÞ� exp
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z
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r00dr00: (5)

We are interested in the far field a few wavelengths away
from the axis r0=z � 1 , kr0r00=z � 1, so we can use the
same first-order approximation of the Bessel function
around the origin as above to get

�ðr0; �0; zÞ ¼ ��

i�z
exp½iðkzz�!tÞ� exp
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�
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0
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exp½ið�0 � �=2Þ�r003 þ x0r

00
�
dr00:

(6)

That expression can be easily integrated:

�ðr0; �0; zÞ ¼ ��2�a4

4�2z2
exp

�
i
kr02

2z

��
x0 þ i

�
y0 þ 2zx0�

�a2

��

� exp½iðkzz�!tÞ�: (7)

Thus, the vortex shift is perpendicular to the displace-
ment of the circular aperture. It is proportional to the
distance z, so we can introduce an angle of deviation:

arctanð2x0�
�a2

Þ. The existence of a transverse momentum for

an optical vortex scattered by an off-axis aperture was
inferred in relation with the intrinsic and extrinsic nature
of the orbital angular momentum [16]. However, the trans-
verse shift of the scattered vortex whose rotation axis
remains directed on theOz axis is remarkable and provides
a means to measure the radius of the aperture. The scat-
tered amplitude decreases as the fourth power of the radius
of the aperture, whereas the Rayleigh scattering is only
quadratic with the amplitude. This is obviously the most
severe drawback of this technique.
Here, we propose a correlation method in order to detect

and localize precisely the phase singularity (xsing, ysing),

thus measuring the shift of the diffracted vortex. Let us
consider, for instance, a vortex scanned on a grid made of
61� 61 points as shown in Figs. 1(a) and 1(b). First, we
extract a set of points centered on the phase singularity.
That defines several ‘‘matrices of reference’’—denoted
MR in the following paragraphs—of different sizes N �
N. For each of them, the correlation function with the
original measurements made on the whole grid of 61�
61 is computed [Figs. 1(c)–1(e)]. Obviously, the correla-
tion is excellent at the center because the vortex core
includes the phase singularity, whose position is given by
the maximum of the correlation coefficient (¼1). On the
other hand, the correlation coefficient decreases by moving
away from the center. In addition, by comparing Figs. 1(c)–
1(e), one can note that the smaller the MR size is, the
sharper the correlation is. The accuracy of this technique
depends only on the MR size. The result is a nonclassical
resolution, which is nonexistent with other classical waves.
To illustrate the previous analysis, we perform acoustic

experiments underwater by using a recently developed
setup [17]. The latter is made of a spherically focused
array of 127 piezoelectric transducers mounted on a spheri-
cal cap with a geometrical focal length F ¼ 450 mm and a
diameter aperture D ¼ 100 mm, immersed in water as
shown in Fig. 2. The origin of the Oz axis is fixed at the
focal point, so that the array of transducers is located in the
plane z ¼ �450 mm. The central frequency of the trans-
ducers is 1 MHz, and they are excited by wave trains
centered at the same frequency corresponding to a time
period T ¼ 1 �s and a wavelength � ¼ 1:5 mm. Then, we
use the linear inverse filter technique [18] to synthesize
acoustical vortices with a width equal to 10� in the focal
plane z ¼ 0 mm.
To simulate a circular aperture, we insert an ‘‘acoustic

diaphragm’’ made of stainless steel in the focal plane. This
high acoustic impedance plate is much larger than the
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propagating vortex extension. We use various perforated
plates with holes of diameters d ¼ �, 2�, and 4�. In com-
parison, the limited resolution due to diffraction is equal to
�F=D ¼ 4:5� in our experiments. The diaphragms are
mounted on a stepper motor to control the lateral displace-
ments along the Ox axis. Finally, we align the array of
transducers with the hole as accurately as possible. Then,
we measure the instantaneous amplitude of the acoustic
field diffracted by the circular aperture in the plane z ¼
450 mm, thanks to a needle hydrophone of 1 mm in
diameter (Precision Acoustics Ltd., United Kingdom).
The latter is moved by steppers motors in both transverse
directions (Ox and Oy). Thus, pressure can be recorded on
a surface as shown in Figs. 1(a) and 1(b).

Then, once the vortex position is approximately local-
ized, its core—i.e., the zero-amplitude area—is scanned
more precisely with 61� 61 points regularly set on a
square grid of 30� 30 mm2 with a spatial step of �=3 ¼
0:5 mm. A more accurate scan would not provide us with
more information because of the spatial averaging on the
hydrophone surface (�1 mm2). So, we interpolate the
measured acoustic field numerically by 20 to obtain a finer
meshing.

Let us consider the most interesting case, namely, the
smallest hole of diameter d ¼ �. Figure 3 shows that,
while the diaphragm is moved along theOx axis, the phase
singularity also shifts along the same transverse direction.
As previously explained, the correlation map displays the
precise position of the phase singularity. Thus, we are able
to measure precisely its lateral displacement xsing as a

function of the lateral displacement of the circular aperture
x0. Figures 4(a)–4(c) show the measurements of xsing in

function of x0 for the various diameters, respectively, d ¼
�, d ¼ 2�, and d ¼ 4�. The figures reveal a linear depen-
dence between these two parameters for each diameter.
Then, linear regressions are performed and the fitting
parameters are given in the insets in Figs. 4(a)–4(c).
Fitting parameter b corresponds to the ‘‘shift velocity’’ of
the phase singularity. Fitting parameter a corresponds to its
position along the Ox axis when the circular aperture is
perfectly centered in the plane z ¼ 0 mm. Let us note that
the fitting parameter a is not equal to 0 in our experiments,
as shown in the insets in Figs. 4(a)–4(c). This is probably
due to a slight misalignment.

Contrary to the optical domain, perfectly opaque dia-
phragms do not exist in acoustics. Therefore stainless steel

plates used here can only be considered as ‘‘semiopaque.’’
To reduce the transmission even more, we chose a �steel=4
thickness. But even in that case the transmitted wave
cannot be neglected. Therefore, we get the superposition
of a transmitted vortex centered at ðx ¼ 0; y ¼ 0Þ and a

scattered vortex located at ðx ¼ x0; y ¼ � 4zx0
ka2

Þ. The am-

plitude of the scattered vortex is S ¼ � �2a4

4�2z2
expði kr022z Þ,

whereas for the transmitted one, we must take into account
the complex transmission factor of the stainless steel plate,
T, and the diffraction from the circular aperture to the
plane of measurement. The last effect results in a complex
coefficient due to the spreading of energy and the Gouy
phase. This coefficient was measured by numerically back-
propagating the field measured at z ¼ 450 mm in free
space. The result is expði�Þ=6:56 with the approximation
of Eq. (2). The resulting total field is

�Tðr0;�0;zÞ¼�

�
� T

6:5
þS

��
x�x0

�
Reð�Þ� 2z�

�a2
Imð�Þ

�

þ i

�
y�x0

�
Imð�Þþ 2z�

�a2
Reð�Þ

���
; (8)

with � ¼ S=ð�T=6:5þ SÞ. The factor of proportionality
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FIG. 2 (color online). Experimental setup immersed in water.
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FIG. 3 (color online). Singularity shift observed in the plane
z ¼ 450 mm while diaphragm shifts: (a) x0 ¼ ��=2,
(b) x0 ¼ ��=4, (c) x0 ¼ 0, (d) x0 ¼ �=4, and (e) x0 ¼ �=2.
From left to right: amplitude rms, phase, and correlation coef-
ficients. Dashed lines indicate the position of the detected phase
singularity (xsing, ysing) thanks to the correlation method (see the

text).
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now depends on both the aperture radius and the stainless
steel plate transmission factor. However, the scattered field
is so weak that we may even consider that jTj � jSj. The
phase shift due to the thickness of the plate is �ð!=
csteelÞð�steel=4Þð1� csteel=cwaterÞ ¼ ��=2ð1� 5:8=1:48Þ ¼
2:92�=2, and we can get the factor expði2:92�=2Þ ’
�0:13� 0:99i. Note that close to the axis S is purely
real. Thus, we use the approximation � ’ �6:5ð0:13þ
0:99iÞS=jTj. The previous expression can be simplified to

�Tðr0; �0; zÞ ’ �
�
�T

6:5

��
x� x0

12:9z�

�a2
S

jTj
þ i

�
yþ x0

1:6z�

�a2
S

jTj
��
: (9)

The phase shift due to the thickness of the stainless steel
plate leads to a scattered vortex shifted on theOx axis. The
shift is proportional to x0 with a coefficient of proportion-
ality now equal to ð12:9z�=�a2ÞðS=jTjÞ that behaves as
1=a2. The slope b can now be computed and is equal to
ð12:9��=16zÞðd=�Þ2ð1=TÞ. The transmission factor can
also be derived by computing the geometric series describ-
ing the multiple reflections inside the stainless steel plate.
The result is T ¼ 2Zwater=Zsteel ’ 1=15:3, where Z is the
impedance that has been checked experimentally. The final
result is b ¼ 0:129ðd=�Þ2 and is reported in Fig. 4(d). It
shows an excellent quantitative agreement between the
experiments (h) and the theoretical analysis (solid curve).

By using singular waves, the size and the location of a
hole about 5 times smaller than the classical limit of
resolution has been recovered. This demonstrates that sin-
gular waves can be used to perform subdiffraction imaging
in acoustics as well as in optics as long as scalar fields are

considered. To achieve this goal, we have detected the
location of the phase singularity once the vortex has been
diffracted by the circular aperture thanks to a correlation
with a vortex of reference exploiting the superoscillation
property. However, unexpectedly, an incident beam with a
nonzero topological charge is diffracted sideways, and the
amount of deviation is proportional to the misalignment
and the inverse of the surface of the hole. Therefore, this
technique is not limited by the size of the hole. The main
limitations are, on the one hand, the poor signal-to-noise
ratio since the amplitude of the helical beam tends towards
zero as the superoscillation tends toward infinity close to
the vortex axis. On the other hand, the dynamic range
required to image more complex objects is very large since
the amplitude of the wave scattered by an on-axis hole
varies as the square of Rayleigh scattering amplitude. In a
future work, we will study smaller objects—e.g., about a
fraction of the wavelength—in order to achieve subwave-
length imaging.
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FIG. 4. Singularity shift (xsing) vs diaphragm shift (x0) for
three hole diameters: (a) d ¼ �, (b) d ¼ 2�, and (c) d ¼ 4�.
The insets correspond to the linear fit values of experimental
data. (d) Fitting parameter b (in log-log scale): experimental data
(h) and theoretical predictions (solid curve; see the text). The
vertical dashed line refers to the diffraction limit.
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