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In experiments with trapped atoms, atomic energy levels are shifted by the trapping optical and

magnetic fields. Regardless of this strong perturbation, precision spectroscopy may be still carried out

using specially crafted, ‘‘magic’’ trapping fields. Finding these conditions for particularly valuable

microwave transitions in alkali-metal atoms has so far remained an open challenge. Here I demonstrate

that the microwave transitions in alkali-metal atoms may be indeed made impervious to both trapping

laser intensity and fluctuations of magnetic fields. I consider driving multiphoton transitions between the

clock levels and show that these ‘‘doubly magic’’ conditions are realized at special values of trapping laser

wavelengths and fixed values of relatively weak magnetic fields. This finding has implications for

precision measurements and quantum information processing with qubits stored in hyperfine manifolds.

DOI: 10.1103/PhysRevLett.105.033002 PACS numbers: 37.10.Jk, 06.30.Ft

Compared to spectroscopic beam experiments, trapping
cold atoms and molecules removes Doppler shifts and
increases interrogation time, thereby dramatically enhanc-
ing spectral resolution. This improvement comes at a price:
trapping optical fields strongly perturb atomic energy lev-
els—transition frequencies are shifted away from their
unperturbed values. In addition, the underlying Stark shift
is proportional to the local intensity of the trapping lasers;
the shift is nonuniform across the atomic ensemble and it is
also sensitive to laser intensity fluctuations. So trapping
seems to be both advantageous and detrimental for preci-
sion measurements. This dilemma is elegantly solved using
so-called magic traps [1]. At the magic trapping conditions
two levels of interest are shifted by exactly same amount
by the trapping fields; therefore the differential effect of
trapping fields simply vanishes for that transition.

The idea of such magic trapping has been crucial for
establishing a new class of atomic clocks [2], the optical
lattice clocks. Here atoms are trapped in optical lattices
formed by counterpropagating laser beams; the lasers op-
erate at the magic wavelength. In these clocks one employs
optical transitions in divalent atoms, such as Sr and Yb.
Finding similar magic conditions for ubiquitous alkali-
metal atoms employed in a majority of cold-atom experi-
ments remains an open challenge. Especially valuable are
the microwave transitions in the ground-state hyperfine
manifold. Identifying magic conditions here, for example,
would enable developing micromagic clocks [3]: lattice
clocks operating in the microwave region of the spectrum.
In addition, the hyperfine manifolds are used to store
quantum information in a large fraction of quantum com-
puting proposals with ultracold alkali-metal atoms.
Finding magic conditions would enable a decoherence-
free trapping for this important realization of qubits.

The clock transitions in divalent atoms are between
nonmagnetic states; this removes sensitivity to magnetic

fields. For alkali-metal atoms, however, an additional piece
of the puzzle is that the clock or qubit states are sensitive to
both optical and magnetic fields. One needs to eliminate
the sensitivity of transition frequency � to both perturba-
tions simultaneously. This problem is solved here. We will
require that the clock-qubit transition is insensitive to both
Stark- and Zeeman-induced perturbations (we will use the
doubly magic qualifier for such trapping conditions).
First steps in identifying magic conditions for hyperfine

transitions in alkali-metal atoms have been made in
Refs. [4–6]. These works focused on eliminating sensitiv-
ity to laser intensity IL by tuning the laser frequency to its
magic value !m, ��ð!mÞ ¼ 0, regardless of the value of
IL. The proposals [5,6] have neglected the effect of mag-
netic fields and focused on B field sensitiveMF � 0 states.
So while the trapping would be Stark-insensitive, the states
would decohere due to coupling to stray B fields. A partial
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FIG. 1 (color online). Left panel: Zeeman effect for the
hyperfine manifold in the ground state of I ¼ 3=2 iso-
topes of alkali-metal atoms. Two clock or qubit levels
jF0 ¼ 2;M0

F ¼ þ1i and jF ¼ 1;MF ¼ �1i are shown in black.
The right panel illustrates the geometry of laser-atom interac-
tion: the degree of circular polarization, angle �, and laser
wavelength may be varied.
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solution to this problem was discussed in Refs. [7,8]:
moving to the MF ¼ 0 states eliminates sensitivity to
Zeeman shifts to the leading order. Yet one needs to apply
a bias magnetic field of a specific value making the con-
ditions magic for a given trapping laser wavelength. As a
result, the transitions remain Zeeman-sensitive through the
second-order effects; numerical estimates show that, un-
fortunately, the residual B field sensitivity would preclude
designing a competitive clock.

Clearly, the sensitivity to B fields has to be addressed.
We require that at the magic B field d�=dBðBmÞ ¼ 0.
Such conditions occur, for example, for a two-photon
jF0 ¼ 2;M0

F ¼ þ1i ! jF ¼ 1;MF ¼ �1i transition in
87Rb at the field of about 3 Gauss. The relevant Breit-
Rabi diagram is shown in Fig. 1. The two clock or qubit
levels are highlighted: the existence of the magic B field
may be inferred visually. Experimentally, such magic con-
ditions have been proven instrumental for performing colli-
sional studies in magnetically trapped Bose-Einstein
condensates of 87Rb [9] and studying the decoherence of
a cold cloud of Rb near a microchip [10]. Similar ideas are
essential to realizing atomic clocks on a microchip [11,12].
My present work adds the optical fields to the mix: it turns
out that the unified Stark-Zeeman description is nontrivial
due to an interference of the two effects.

Formalism.—We are interested in the transition be-
tween two hyperfine states jF0 ¼ I þ 1=2;M0

Fi and
jF ¼ I � 1=2;MFi attached to the ground electronic
nS1=2 state of an alkali-metal atom (I is the nuclear spin).

Here and below we denote the upper state as jF0i and the
lower state as jFi (see Fig. 1).

We focus on the M0
F ¼ �MF transitions. For these

transitions, the electronic g factors of the two states are
the same (see Fig. 1). Then the bulk of the Zeeman shift of
the transition frequency goes away and the linear Zeeman
effect is determined only by the nuclear g factor gI ¼
1=I�nuc=�N , where �N is the nuclear magneton. The
residual linear shift is compensated by the second-order
Zeeman correction, quadratic in the B field. This leads to
the magic value of the B field

Bm � gI�NMF0

2jhF;MF0 j�e
zjF0;MF0 ij2 h�clock; (1)

where �e is the operator of the magnetic moment of an
electron. The second-order estimate, Eq. (1), is a good
approximation: for 87Rb it gives 3.25 G, while the ‘‘all-
order’’ Breit-Rabi analysis yields Bm ¼ 3:228 917ð3Þ G
(Ref. [9]). Values of Bm for Rb and Cs isotopes are tabu-
lated in Table I. Notice that the fields for all tabulated
transitions are relatively weak and can be well stabilized
using existing technologies [11].
Fixing the magnetic field at its magic value accom-

plishes the Zeeman-insensitivity of the clock-qubit transi-
tions. Now we would like to additionally remove the Stark
sensitivity to intensity of trapping laser fields. We consider
the following setup shown in Fig. 1. An atom is illuminated
by a laser light, with a certain degree of circular polariza-
tion A. At the same time, a bias magnetic field is applied at
an angle � to the direction of laser propagation. The B field
is fixed at its magic value. This is a basic building block for
optical trapping. For example, an optical lattice (standing
wave) may be formed by two counterpropagating lasers of
the same wavelength.
In a laser field, both clock or qubit levels are shifted due

to the dynamic (i.e., laser-frequency-dependent) Stark ef-
fect [13]. I derived the following formula for the differen-
tial shift of the clock or qubit frequency [14],

��clockð!Þ ¼ � 1

h

�
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Here EL is the amplitude of the laser E field, IL / E2
L. The

quantities �s, �a, and �a are the scalar and vector (axial)
polarizabilities (see below). An important fact is that all
these polarizabilities depend on the laser frequency, !. By
tuning the laser frequency we require that the combination
in curly bracket becomes zero. At that magic point, the
differential shift vanishes independently of the laser inten-
sity: ��clockð!mÞ ¼ 0.
What is the difference between the polarizabilities� and

�? We are considering the Stark shift of hyperfine levels
attached to the same electronic state. To the leading order,
the shift is determined by the properties of the underlying
electronic state (polarizability �). However, because the
electronic state for both hyperfine levels is the same, the
levels are shifted at the same rate [15] and we need to
distinguish between the two hyperfine levels. An apparent
difference between the two clock or qubit levels is caused
by the hyperfine interaction, and the rigorous analysis
involves so-called hyperfine-interaction-mediated polariz-
abilities, �. Lengthy third-order (two dipole couplings to

TABLE I. Values of magic B fields and magic wavelengths.

Transition Bm, Gauss �m

87Rb, I ¼ 3=2, �clock ¼ 6:83 GHz
j2; 1i ! j1;�1i 3.25 806 nma

85Rb, I ¼ 5=2, �clock ¼ 3:04 GHz
j3; 1i ! j2;�1i 0.359

j3; 2i ! j2;�2i 1.15 479–658;797–878

133Cs, I ¼ 7=2, �clock ¼ 9:19 GHz
j4; 1i ! j3;�1i 1.41

j4; 2i ! j3;�2i 3.51 906–1067; 560-677

j4; 3i ! j3;�3i 9.04 898–1591;863–880; 512–796

aNearly doubly magic.
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the laser field and one hyperfine interaction) expressions
for these polarizabilities may be found in Ref. [4].

Continuing with our discussion of the frequency shift
(2), I would like to stress an unconventional origin of the
last contribution. Its full form for an arbitrary B field is
A cos�MF0gI

�N

�B
�a
nS1=2

ðB=BmÞ. The term arises due to an

interference between Stark and Zeeman interactions.
Qualitatively, the vector contribution to the Stark shift
has the very same rotational properties as the Zeeman
coupling (both are vector operators). These operators, in
particular, couple the two hyperfine manifolds. Consider
the shift of the jF0;MFi level. The Zeeman operator
couples it to the jF;MFi intermediate state, and then the
vector Stark shift operator brings it back to the jF0;MFi
level, thereby resulting in the energy shift. This cross term
is of the same order of magnitude as the other two terms in
Eq. (2) and has to be included in the consideration.

Now we can find magic wavelengths by numerically
evaluating atomic polarizabilities entering Eq. (2). To
this end I used a blend of relativistic many-body techniques
of atomic structure, as described in [16]. To improve upon
the accuracy, high-precision experimental data were used
where available. To ensure the quality of the calculations, a
comparison with the experimental literature data on static
Stark shifts of the hyperfine transitions was made. It is one
of the problems where a consistent treatment is important
and less sophisticated estimates may fail even qualitatively
(see [8] for a discussion).

Results.—I will present the results of the calculations in
the following form. Since the magic condition corresponds
to ��clockð!mÞ ¼ 0, we may recast Eq. (2) into

MF0A cos� ¼ � �s
F0 � �s

F

ð 1
2F0 �a

F0 þ 1
2F �

a
FÞ þ gI

�N

�B
�a
nS1=2

: (3)

The right-hand side of this equation depends on the laser
frequency, while the left-hand side does not. Moreover,
jA cos�j � 1; therefore the magic conditions would exist
only if for a given ! the right-hand side is within the range
�jM0

Fj and jM0
Fj.

Doubly magic trapping of 133Cs is analyzed in Fig. 2.
This atom is metrologically important. For the past four
decades the SI unit of time, the second, has been defined as
a duration of a certain number of periods of radiation
corresponding to the transition between the two hyperfine
levels of the ground state of the 133Cs atom. Cs clocks serve
as primary frequency standards worldwide and there is a
substantial investment in the infrastructure supporting
these clocks.

From Fig. 2 we find that the doubly magic trapping of Cs
atoms is indeed possible for two transitions: j4; 2i !
j3;�2i and j4; 3i ! j3;�3i. The only complication is
that driving the former transition requires 4 photons, while
the latter transition requires 6 photons. This may be poten-
tially accomplished either with multistep rf or MW or
stimulated Raman drives [9,17]. In addition, at least for

the two-photon transitions, an electromagnetically-in-
duced-transparency-based interrogation scheme that par-
tially removes sensitivity to the probing fields was
proposed recently [18].
The curve (3) exhibits a resonant behavior when the

laser frequency passes through the fine-structure doublet
of atomic transitions: 6s1=2-6p1=2 and 6s1=2-6p3=2 at ! ¼
0:050 932 a:u: and 0:053 456 a:u:. Not shown in the Fig. 2
are the values of the right-hand side of Eq. (3) between the
resonances. In this region, the right-hand side values be-
come positive and the curve crosses the MF0A cos� ¼ þ3
limit from above: the 6-photon transition may be made
doubly magic when the laser is tuned to inside the fine-
structure doublet.

87Rb serves as the secondary frequency standard. An
analysis of magic conditions for this atom is carried out in
Fig. 3. There is a single, jF0 ¼ 2; 1i ! jF ¼ 1;�1i, tran-
sition of interest here. This is a two-photon transition.
Curiously, the MF0A cos� curve nearly touches its limiting
value at! � 0:0565 a:u: (�m � 806 nm) somewhat below
the 5s1=2-5p3=2 resonance. Here the right-hand side of

Eq. (3) reaches values of � �1:05; i.e., it is just 5% off
the limiting value of �1. While not quite achieving the
doubly magic status, this 806 nm wavelength gets us to
nearly magic conditions. In practice, if one may afford
small Zeeman decoherences, the bias B field may be
detuned off its magic value. Then (see discussion above)
the last term in the Stark shift, Eq. (2), is rescaled by the
ratio (B=Bm) and the magic condition for the Stark shift
can be reached. For example, I computed that �m �
806 nm becomes ‘‘Stark magic’’ at a B field of 3.45 G,
i.e., just 6% larger than its ‘‘Zeeman-magic’’ value.
Ultimately, the choice of B should be a matter of optimiz-
ing tolerances to both Stark and Zeeman-induced decoher-

FIG. 2 (color online). Magic conditions for 133Cs. A de-
pendence of the product MF0A cos� on trapping laser fre-
quency (in atomic units) is plotted. The shaded regions are
bound by �jMF0 j and þjMF0 j lines. Magic trapping for the
jF0 ¼ 4;M0

Fi ! jF ¼ 3;�M0
Fi clock-qubit transition is only

possible when the computed curve lies inside the corresponding
shaded region.
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ence in a particular application. For example, in a recent
Paris experiment [12] with a magnetically trapped en-
semble of 87Rb atoms, the bias B field has been varied by
as much as 16% from its magic value; this still has led to
well-resolved contrast on the jF0 ¼ 2; 1i ! jF ¼ 1;�1i
clock transition.

Finally, in Fig. 3 we explore magic conditions for an-
other isotope of Rb, 85Rb. Compared to 87Rb, the nuclear
spin of this isotope is larger (I ¼ 5=2); this results in
larger values of F and richer magnetic substructure of
the hyperfine levels. Two transitions of interest become
available: jF0 ¼ 3; 1i ! jF ¼ 2;�1i and jF0 ¼ 3; 2i !
jF ¼ 2;�2i. Moreover, various contributions to Eq. (2)
scale differently with the nuclear spin and we need to carry
out a separate calculation for each isotope. From Fig. 3, we
find that doubly magic conditions can be attained for the
jF0 ¼ 3; 2i ! jF ¼ 2;�2i transition in 85Rb.

I also carried out calculations for other commonly used
alkali-metal atoms. For 7Li, 23Na, and 39K there are no
doubly magic (or ‘‘near-magic’’) points; all these isotopes
have I ¼ 3=2. For various Fr isotopes, there is a multitude
of doubly magic points for multiphoton transitions. For
example, for the 210Fr (I ¼ 6) transition MF ¼ �7=2 !
þ7=2 these conditions are attained in the range �m ¼
846–1061 nm.

To conclude, by working at the doubly magic (Stark-
Zeeman) conditions, one can greatly reduce sensitivity to
spatial inhomogeneity due to trapping or bias fields and
also reduce sensitivity to temporal fluctuations of the
fields. It is anticipated that a variety of applications could

take advantage of the magic (and nearly magic) conditions
found in this Letter. For example, we anticipate that life-
times of quantum memory [19] may be improved. Another
opportunity is developing micromagic lattice clocks.
While the detailed accuracy analysis for such clocks is
beyond the scope of this Letter, the key finding here is
that the multiphoton transitions in metrologically impor-
tant 133Cs can be made simultaneously insensitive both to
intensities of trapping lasers and also to fluctuations of
magnetic fields.
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