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An elementary field-theoretic mechanism is proposed that allows one Lagrangian to describe a family

of particles having different masses but otherwise similar physical properties. The mechanism relies on

the observation that the Dyson-Schwinger equations derived from a Lagrangian can have many different

but equally valid solutions. Nonunique solutions to the Dyson-Schwinger equations arise when the

functional integral for the Green’s functions of the quantum field theory converges in different pairs of

Stokes’ wedges in complex-field space, and the solutions are physically viable if the pairs of Stokes’

wedges are PT symmetric.
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The standard model of elementary particles has three
generations of fermions (leptons and quarks) whose masses
range over several orders of magnitude. It is not known
why there are three generations of masses and whether
there are only three. This Letter proposes a field-theoretic
mechanism that might explain the occurrence of genera-
tions of particles having different masses but otherwise
similar physical properties: There might be just one
Lagrangian (or Hamiltonian) to account for the properties
of all these particles, but the functional integral constructed
from this Lagrangian may have many different physical
realizations depending on the boundary conditions on the
path of integration in complex-field space. While the
Dyson-Schwinger equations constructed from the func-
tional integral are unique, the solution to these equations
is not unique. The number of distinct solutions to the
Dyson-Schwinger equations equals the number of pairs
of complex Stokes’ wedges in function space in which
the boundary conditions on the functional integration can
be imposed. For each pair of Stokes’ wedges there corre-
sponds a different field theory.

Z. Guralnik et al. [1] first recognized that for functional
integrals, inequivalent classes of contours associated with
different complex boundary conditions give rise to nonun-
ique solutions to the Dyson-Schwinger equations. They
argued that multiple solutions might account for inequiva-
lent � vacua. The key point of the current Letter is that the
pairs of Stokes’ wedges in which the integration contours
terminate must be oriented in a PT -symmetric fashion in
complex-field space. If this is the case, there is strong
evidence that the corresponding field theory will be physi-
cally acceptable; that is, the masses (poles of the Green’s
functions) will be real and the theory will be unitary. The
mechanism proposed here is field theoretic, but its appli-
cation is not restricted to elementary particle physics.
Experiments on PT -symmetric optical waveguides [2,3]
and on PT -symmetric diffusion [4] have been reported
recently.

The conjecture discussed in this Letter stems from re-
cent research on PT quantum mechanics, where it has
been shown that the PT -symmetric Hamiltonians

H ¼ p2 þ q2ðiqÞ� ð� � 0Þ (1)

all have real positive spectra [5,6]. Each of these
Hamiltonians defines a conventional quantum theory with
a Hilbert space having a positive inner product [7]. The
time-evolution operator U ¼ e�iHt is unitary and thus
probability is conserved. Spectral reality and unitary time
evolution are essential for any quantum theory. These
features are guaranteed if H is Dirac Hermitian. (By
Dirac Hermitian we mean that H ¼ Hy, where y repre-
sents combined complex conjugation and matrix transpo-
sition.) However, it is not necessary for H to be Dirac
Hermitian for the spectrum to be real and for time evolu-
tion to be unitary; non-Dirac-Hermitian Hamiltonians can
also define physically acceptable quantum theories.
The Hamiltonians (1) are PT symmetric because they

are invariant under combined spatial reflection P and time
reversal T . Such Hamiltonians are physically acceptable
because they are self-adjoint, not with respect to the Dirac
adjoint y, but rather with respect to CPT conjugation,
where C is a linear operator that represents a hidden
reflection symmetry of H. The CPT adjoint defines a
positive-definite Hilbert space norm. Not every
PT -symmetric Hamiltonian has an entirely real spectrum,
but the spectrum is entirely real if and only if a linear
PT -symmetric operator C exists that obeys three simulta-
neous algebraic equations [7]: C2 ¼ 1, ½C;PT � ¼ 0,
½C; H� ¼ 0. When the C operator exists, we say that the
PT symmetry of H is unbroken. Finding the C operator is
the crucial step in showing that time evolution for a non-
Hermitian PT -symmetric Hamiltonian is unitary. The
phase transition between broken and unbroken regions
for some PT -symmetric Hamiltonians has been observed
experimentally [3,4].
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The Hamiltonians in (1) are smooth extensions in the
parameter � of the Dirac-Hermitian harmonic oscillator
Hamiltonian (at � ¼ 0) into the complex non-Hermitian
domain (� > 0). As � increases from 0, the Stokes’ wedges
in the complex-x plane inside of which the boundary
conditions for the eigenvalue problem

� c 00ðxÞ þ x2ðixÞ�c ðxÞ ¼ Ec ðxÞ (2)

are imposed, rotate downward, and become thinner. As
shown in Ref. [5], at � ¼ 0 the Stokes’ wedges are centered
about the positive- and negative-real axes and have angular
opening 90�. At � ¼ 2 the Stokes’ wedges are adjacent to
and below the real axes and have angular opening 60�.
When � > 2, these wedges lie below the real axis.

To illustrate the idea of this Letter in a quantum-
mechanical context we set � ¼ 4 in (1). The resulting x6

Hamiltonian describes two different quantum theories be-
cause the eigenfunctions c ðxÞ can satisfy two different sets
of boundary conditions [8]: (i) the conventional Dirac-
Hermitian quantum theory for which c ðxÞ vanishes as
jxj ! 1 in the complex-x plane in 45� wedges centered
about the real axes; or (ii) the unconventional PT theory,
which is the extension in � of the harmonic oscillator. For
this non-Hermitian quantum theory c ðxÞ also vanishes as
jxj ! 1 in the complex plane in 45� wedges, but now
these wedges are centered about argx ¼ �45� and argx ¼
�135�. The one-point Green’s function G1 ¼ hxi distin-
guishes between these two theories. The conventional
Dirac-Hermitian theory has parity symmetry, and thus G1

vanishes. The boundary conditions for the PT quantum
theory violate parity symmetry, and as a result G1 has a
negative-imaginary value. The nonvanishing of G1 in the
PT theory is a purely nonperturbative effect; one cannot
express G1 for the Hamiltonian H ¼ p2 þ x2 þ gx6 as a
series in powers of g.

The idea that different boundary conditions allow one
Hamiltonian (or Lagrangian) to describe several different
physical theories is general and extends beyond quantum
mechanics to quantum field theories of fermion and/or
boson fields of any spin and in any space-time dimension.
However, for brevity we consider here the massless
D-dimensional pseudoscalar field theory (D< 2) having
a self-interaction of the form �4nþ2 (n ¼ 1; 2; 3; . . . ).
(Under parity reflection � ! ��.) The Euclidean func-
tional integral for the vacuum persistence functional in the
presence of an external source J is

Z½J� ¼ h0j0i ¼
Z
C
D�e�S;

S ¼
Z

dDs

�
1

2
ðr�Þ2 þ g

4nþ 2
�4nþ2 � J�

�
:
(3)

At D ¼ 1, this quantum field theory reduces to a quasi-
exactly solvable quantum-mechanical theory [9].

For each integer n there are nþ 1 different physical
realizations of the quantum field theory in (3). To explain

this we consider the analogous one-dimensional integralR
C d’ expð�’4nþ2Þ. When n ¼ 0 this integral exists only

if the integration contour C begins and ends in the Stokes’
wedges of angular opening 90� centered about the real-’
axis. These Stokes’ wedges are shown in Fig. 1. The
contour C must begin and end in different Stokes’ wedges;
if C begins and ends in the same Stokes’ wedge, the
integral vanishes. When n ¼ 1, there are two possible
choices for integration contour C; C may connect the two
30�-Stokes’ wedges centered about the real axis or C may
connect the 30�-Stokes’ wedge centered about �120� to
the 30�-Stokes’ wedge centered about �60� (see Fig. 2).
The contour C for

R
C d’ expð�’6Þ must join a pair of

PT -symmetric Stokes’ wedges (wedges that are symmet-
ric about the imaginary axis) or else the integral is not real.
A third pair of 30�-Stokes’ wedges, one centered about 60�
and the other centered about 120�, is not shown in Fig. 2;

FIG. 1 (color online). Stokes’ wedges (shaded regions) in the
complex-’ plane in which the integration contour C for the
integral

R
C d’ expð�’2Þ terminates. This integral does not exist

if C terminates in an unshaded wedge.

FIG. 2 (color online). Stokes’ wedges (shaded regions) of
angular opening 30� in which the integration contour C for the
integral

R
C d’ expð�’6Þ may terminate. The integral has two

possible real values, one for which the contour connects the pair
of wedges centered about the real axis and the other for which
the contour connects the lower pair of wedges.
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the integral exists if the contour C connects this pair of
Stokes’ wedges, but this case is not new; it is just the
complex conjugate of the configuration in which C con-
nects the �120� and �60� wedges.

The cases n ¼ 2 (three pairs of 18� Stokes’ wedges) and
n ¼ 3 (four pairs of 12.8� Stokes’ wedges) are shown in
Fig. 3. In the former case the

R
C d’ expð�’4nþ2Þ has three

independent real values; in the latter case it has four
independent real values.

Returning to the quantum field theory with vacuum
persistence function given in (3), we vary the action in
the exponent and obtain the Euclidean field equation in the
presence of the external c-number source JðxÞ:

�r2�ðxÞ þ g½�ðxÞ�4nþ1 ¼ JðxÞ: (4)

This field equation is unique; it does not depend on the
choice of complex contour C.

The expectation value of (4) in the vacuum state is

�r2G1ðxÞ þ gh½�ðxÞ�4nþ1i=Z½J� ¼ JðxÞ; (5)

where G1ðxÞ is the connected one-point Green’s function:

G1ðxÞ ¼ � lnZ½J�
�JðxÞ ¼ h�ðxÞi

Z½J� ¼
Z
C
D��ðxÞe�S: (6)

This expectation value depends on the choice of metric, but
in Ref. [10] it is shown that the path integral automatically
gives the expectation value with the appropriate metric.
Thus, if the integration contour terminates in the wedges
containing the real axis, then the metric uses the conven-
tional Dirac adjoint y, and if the contour terminates in
another pair of Stokes’ wedges, then the metric uses the
CPT adjoint of the corresponding non-Dirac-Hermitian
PT -symmetric field theory [11].

To derive the Dyson-Schwinger equations for the con-
nected Green’s functions of the quantum field theory, we
express the second term on the left side of (5) in terms of
the higher connected Green’s functions. The technique is

standard (see, for example, Ref. [12]); one differentiates
repeatedly with respect to the external source JðxÞ and uses
the formula for the n-point Green’s function in the pres-
ence of the external source J:

Gnðx; y; z; . . .Þ � �n=½�JðxÞ�JðyÞ�JðzÞ � � �� lnZ½J�: (7)

We must truncate the Dyson-Schwinger equations in
order to obtain a closed system. We consider here just
the first two equations and neglect contributions from
Green’s functions beyond G2ðx; yÞ. This truncation gives
the mean-field (or one-pole) approximation to the two-
point Green’s function. (Including higher Green’s func-
tions does not change any qualitative conclusions of this
Letter.) Thus, we repeatedly differentiate with respect to
JðxÞ and get the following sequence of equations:

h1i ¼ Z½J�; h�ðxÞi ¼ G1ðxÞZ½J�;
h½�ðxÞ�2i ¼ ð½G1ðxÞ�2 þG2ðx; xÞÞZ½J�;
h½�ðxÞ�3i ¼ ð½G1ðxÞ�3 þ 3G1ðxÞG2ðx; xÞÞZ½J�;
h½�ðxÞ�4i ¼ ð½G1ðxÞ�4 þ 6½G1ðxÞ�2G2ðx; xÞ

þ 3½G2ðx; xÞ�2ÞZ½J�;
h½�ðxÞ�5i ¼ ð½G1ðxÞ�5 þ 10½G1ðxÞ�3G2ðx; xÞ

þ 15G1½G2ðx; xÞ�2ÞZ½J�:

(8)

These expressions have a simple form as polynomialsPnðtÞ
in the variable t ¼ G1ðxÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2ðx; xÞ

p
,

h½�ðxÞ�ni ¼ ½G2ðx; xÞ�n=2Z½J�PnðtÞ; (9)

where PnðtÞ ¼ ð�iÞnHenðitÞ are Hermite polynomials
of imaginary argument: P0ðtÞ ¼ 1, P1ðtÞ ¼ t, P2ðtÞ ¼ t2 þ
1, P3ðtÞ ¼ t3 þ 3t, P4ðtÞ ¼ t4 þ 6t2 þ 3, P5ðtÞ ¼
t5 þ 10t3 þ 15t.
Next, we insert (9) into (5) and obtain

�r2G1ðxÞ � i½G2ðx; xÞ�2nþ1=2He4nþ1ðitÞ ¼ JðxÞ: (10)

FIG. 3 (color online). Stokes’ wedges (shaded regions) in which the integration contour C for
R
C d’ expð�’4nþ2Þ may terminate.

When n ¼ 2 (left figure) there are three pairs of Stokes’ wedges and when n ¼ 4 there are four pairs of Stokes’ wedges.
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At J � 0 translation invariance is restored, and G1ðxÞ and
G2ðx; xÞ become the numbers G1 and G2ð0Þ. Thus, the first
of the truncated Dyson-Schwinger equations is

He 4nþ1½iG1=
ffiffiffiffiffiffiffiffiffiffiffiffi
G2ð0Þ

q
� ¼ 0: (11)

Note that the argument of He4nþ1 remains invariant if
wave-function renormalization is performed.

To obtain the second Dyson-Schwinger equation we
differentiate (10) with respect to JðyÞ and set J � 0:

ð�r2 þM2ÞG2ðx� yÞ ¼ �Dðx� yÞ; (12)

where the renormalized mass is given by

M2 ¼ ½G2ð0Þ�2nHe04nþ1½iG1=
ffiffiffiffiffiffiffiffiffiffiffiffi
G2ð0Þ

q
�: (13)

We solve (11)–(13) simultaneously: First, we Fourier
transform (12) and find that in D-dimensional Euclidean

space ~G2ðpÞ ¼ 1=ðp2 þM2Þ. Thus, for 0 � D< 2 we get

the finite result G2ð0Þ ¼ MD�2�ð1�D=2Þ2�D��D=2.
Second, we note that the Hermite polynomial He4nþ1 is
odd and only has real roots. There are two cases: either
(i) G1 ¼ 0, which is the conventional Dirac-Hermitian
parity-invariant solution to the Dyson-Schwinger equa-
tions, or (ii) we get 4n new parity-violating nonzero values
for the one-point Green’s function:

G1;j ¼ �iM�1þD=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1�D=2Þ

p
2�D=2��D=4rj; (14)

where the dimensionless number rj (j ¼ 1; . . . 2n) is one of

the 2n positive roots of He4nþ1. Finally, we use the identity
He04nþ1 ¼ ð4nþ 1ÞHe4n in (13) and use the interlacing-of-
zeros property of the Hermite polynomials to prove that
there are exactly n new positive values of M2 correspond-
ing to the nonzero values of G1;j. This demonstrates the

connection between pairs of Stokes’ wedges and solutions
to the Dyson-Schwinger equations.

For example, when D ¼ 1 in a �6 model, r0 ¼ 0 and
r1 ¼ 2:856 97, and corresponding to these roots the dimen-
sionless renormalized masses are M ¼ 1:391 58 and M ¼
2:253 99. Thus, there are two families of particles: One
particle (associated with a nonvanishing G1;1) has a mass

1.62 times larger than that of the other particle (associated
with a vanishing G1;0). This ratio increases rapidly as a

function of the space-time dimension D; for example, for
D ¼ 0:0, 0.5, 1.0, 1.5, 2.0, 2.5 this ratio takes the values
1.38, 1.47, 1.62, 1.90, 2.62, 6.88.

To conclude, while a flavor symmetry group is conven-
tionally introduced to describe families of particles, we

have shown that such families can arise naturally from the
monodromy structure in the complex-field plane associ-
ated with rotation from one Stokes’ wedge to another.
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