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Black holes (BH’s) in equilibrium can be defined locally in terms of the so-called isolated horizon

boundary condition given on a null surface representing the event horizon. We show that this boundary

condition can be treated in a manifestly SUð2Þ invariant manner. Upon quantization, state counting is

expressed in terms of the dimension of Chern-Simons Hilbert spaces on a sphere with punctures.

Remarkably, when considering an ensemble of fixed horizon area aH, the counting can be mapped to

simply counting the number of SUð2Þ intertwiners compatible with the spins labeling the punctures. The

resulting BH entropy is proportional to aH with logarithmic corrections �S ¼ � 3
2 logaH. Our treatment

from first principles settles previous controversies concerning the counting of states.
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Black holes are intriguing solutions of general relativity
describing the physics of gravitational collapse. These
fascinating systems—whose existence in our Universe is
supported by a great amount of observational evidence—
are remarkably simple. However, in the interior of the
event horizon, the predictive power of classical general
relativity breaks down due to the unavoidable appearance
of unphysical divergences of the gravitational field (singu-
larities). Dimensional arguments imply that quantum ef-
fects cannot be neglected near singularities. In this precise
sense, black holes (BH) provide the most tantalizing theo-
retical evidence for the need of a more fundamental (quan-
tum) description of the gravitational field.

Quantum effects are also important outside the horizon.
Indeed the semiclassical calculations of Hawking [1] show
that BH’s radiate as perfect black bodies at temperature
proportional to their surface gravity and have an entropy
S¼aH=4‘

2
p, where ‘

2
p¼G@=c3 is the Planck area. This en-

tropy is expected to arise from the huge number of micro-
states of the underlying fundamental quantum theory de-
scribing the BH, and therefore its computation from basic
principles is an important test of any candidate quantum
theory of gravity. This Letter proposes a new and more fun-
damental framework for the computation of BH entropy in
loop quantum gravity (LQG) and establishes a precise
relationship between SUð2Þ Chern-Simons (CS) theory
and quantum black hole physics as first explored in [2].

Our treatment clarifies the description of both the clas-
sical as well as the quantum theory of black holes in LQG
making the full picture more transparent. We show that, in
contrast with prior results [3], the gauge symmetry of LQG
need not be reduced from SUð2Þ to Uð1Þ at the horizon.
Even when the Uð1Þ reduction is perfectly viable at the
classical level, it leads to imposition of certain components
of the quantum constraints only in a weak sense. Our SUð2Þ
invariant formulation—equivalent to the Uð1Þ at the clas-
sical level—avoids this issue and allows the imposition of
the constraints strongly in the Dirac sense. This leads to a

drastic simplification of the quantum theory in which states
of a black hole are now in one-to-one correspondence with
the fundamental basic volume excitations of LQG given by
single intertwiner states. This settles certain controversies
concerning the relevant quantum numbers to be considered
in the counting of states. The main quantitative result of
our work is the correction of the value of the BH entropy.
The standard definition of a BH as a space-time region of

no escape is a global definition. This notion of BH requires
a complete knowledge of a space-time geometry and is
therefore not suitable for describing local physics. This is
solved by using instead the notion of Isolated horizons
(IH), defined by extracting from the definition of a
Killing horizon the minimum conditions necessary for
the laws of BHmechanics to hold [4]. They may be thought
of as ‘‘apparent horizons in equilibrium.’’ Even though IH
are very general, allowing rotation and distortion, for sim-
plicity here we concentrate on the case in which the
horizon geometry is spherically symmetric. In the vacuum
case, the latter are easy to visualize in terms of the char-
acteristic formulation of general relativity with initial data
given on null surfaces: spacetimes with such IH are solu-
tions to Einstein’s equations where Schwarzschild data are
given on the horizon and suitable free radiation is given at a
transversal null surface [5] (see Fig. 1).
The calculation of black hole entropy in LQG is done

by quantizing the sector of the phase space of general
relativity corresponding to solutions having an IH. At
the technical level this sector is defined by postulating
the existence of a null boundary � � M with topology
S2 � R with the pullback of the gravitational field to �
satisfying the isolated horizon boundary conditions.
It is well known that the initial value formulation of

general relativity can be characterized in terms of a triad
field eia through � ¼ e ^ e—encoding the intrinsic spatial

metric ofM as qab ¼ eiae
j
b�ij—and certain components of

the extrinsic curvatureKab ofM defined byKi
a ¼ Kabe

b
i . It

can be shown that the symplectic structure of gravity
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�Mð�1;�2Þ¼ 1

8�G

Z
M
½�1�

i^�2Ki��2�
i^�1Ki� (1)

is preserved in the presence of an IH. More precisely in the
shaded space-time region in Fig. 1 one has

�M2
ð�1; �2Þ ¼ �M1

ð�1; �2Þ: (2)

That is, the symplectic flux across the isolated horizon �
vanishes due to the isolated horizon boundary condition
[4,6]. One also has that, on shell, phase space tangent
vectors ��, �v of the form

��� ¼ ½�;��; ��K ¼ ½�;K�;
�v� ¼ Lv�; �vK ¼ LvK

for � : M ! suð2Þ and v 2 VectðMÞ tangent to the hori-
zon, are degenerate directions of �M from which one
concludes that SUð2Þ triad rotations and diffeomorphisms
are gauge symmetries [7]. Hence, the IH boundary condi-
tion breaks neither the symmetry under these diffeomor-
phisms nor the SUð2Þ internal gauge symmetry introduced
by the use of triad variables.

Ashtekar-Barbero connection variables are necessary for
the quantization in the manner of LQG. When there is no
boundary the SUð2Þ connection

Ai
a ¼ �i þ �Ki

a (3)

is canonically conjugate to �abc��1�i
bc=2 where � is the

so-called Immirzi parameter. As shown below, in the pres-
ence of a boundary the situation is more subtle: the sym-
plectic structure acquires a boundary term�H. Because of
the fact that, at the horizon, phase space tangent vectors �
are linear combinations of SUð2Þ gauge transformations
and diffeomorphisms tangent to the horizon H ¼ M \�,
the boundary term �H is completely fixed by the require-
ment of gauge invariance, i.e., the condition that local
SUð2Þ transformations, now taking the form

��� ¼ ½�;��; ��A ¼ �dA� (4)

as well as diffeomorphisms preserving H, continue to be
degenerate directions of the symplectic structure. The
symplectic structure, in the new variables, becomes [8]

��M¼
Z
M
2�½1�i^�2�Ai� aH

�ð1��2Þ
Z
H
�1Ai^�2A

i;

(5)

where � ¼ 8�G�, aH is the horizon area, and we have

used the IH boundary condition which in terms of
Ashtekar-Barbero variables is found [6] to take the form

�i þ aH
�ð1� �2ÞF

iðAÞ ¼ 0: (6)

Note that the boundary contribution to the symplectic
structure is given by an SUð2Þ CS symplectic form. One
can also show directly that the boundary term contribution
is necessary for time evolution to preserve the symplectic
form.
Another consequence of the fact that SUð2Þ transforma-

tions and diffeomorphisms preserving H are gauge is that
(in the canonical formulation) they are Hamiltonian vector
fields generated by first class constraints. More precisely
one has that

�ð��; �Þ þ �G½�;A;�� ¼ 0;

�ð�v; �Þ þ �V½v; A;�� ¼ 0;
(7)

where G and V are the Gauss and diffeo constraints,
respectively. They take the form

G½�;A;��¼
Z
M
�i½dA�i=ð��Þ�

þ
Z
H
�i

�
aH

���ð1��2ÞF
iþ 1

��
�i

�
�0;

for all � : M ! suð2Þ, and
V½v; A;�� ¼

Z
M

1

��
½�i ^ v⌟Fi � v⌟AidA�

i�

�
Z
H
v⌟Ai

�
aH

���ð1� �2ÞF
i þ 1

��
�i

�

� 0;

for all v 2 VectðMÞ that is tangent to H at the horizon.
Notice that the previous constraints have the usual Gauss
and diffeo constraint bulk terms, plus boundary terms
given by smearings of (6) on H. Their Poisson algebra is

fG½�;A;��; G½�; A;��g ¼ Gð½�;��; A;�Þ
fG½�; A;��; V½v; A;��g ¼ GðLv�; A;�Þ
fV½v; A;��; V½w;A;��g ¼ Vð½v;w�; A;�Þ;

(8)

where we have ignored the Poisson brackets involving the
scalar constraint as its smearing must vanish on H; i.e., it
does not affect the first class nature of the previous con-
straints. Thus (6) are first class constraints and can be
implemented in the manner of Dirac in the quantum theory.
This fact and the form of the symplectic structure mo-

tivates one to handle the quantization of the bulk and
horizon degrees of freedom (d.o.f.) separately. As in stan-
dard LQG [9] one first considers (bulk) Hilbert spacesH B

�

defined on a graph � � M with end points on H, denoted
� \H. The quantum operator associated with � in (6) is

�ab�̂
i
abðxÞ ¼ 8�G�

X
p2�\H

�ðx; xpÞĴiðpÞ; (9)

where ½ĴiðpÞ; ĴjðpÞ� ¼ �ijkĴ
kðpÞ at each p 2 � \H.

FIG. 1. The characteristic data for a (vacuum) spherically
symmetric isolated horizon corresponds to Schwarzschild data
on �, and free radiation data on the transversal null surface.
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Consider a basis of H B
� of eigenstates of both Jp � Jp as

well as J3p for all p 2 � \H with eigenvalues @2jpðjp þ 1Þ
and @mp, respectively. These states are spin network states,

here denoted jfjp; mpgn1; � � �i, where jp and mp are the

spins and magnetic numbers labeling n edges puncturing
the horizon at points xp (other labels are left implicit).

They are also eigenstates of the horizon area operator âH

âHjfjp; mpgn1; � � �i ¼ 8��‘2p
Xn
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q

� jfjp; mpgn1; � � �i:
We can decompose H B

� according to

H B
� ¼ M

fjpgp2�\H

H B
�ðfjpgÞ (10)

for spaces H B
�ðfjpgÞ spanned by states jfjp; mpgn1; � � �i for

a given n-tuple fjpg.
Substituting the expression (9) into (6) we get

� aH
�ð1� �2Þ �

abF̂i
ab ¼ 8�G�

X
p2�\H

�ðx; xpÞĴiðpÞ: (11)

This equation tells us that the surface Hilbert spaceH H
�\H

is precisely the one corresponding to (the well-studied [9])
SUð2Þ CS theory in the presence of particles with CS level
k ¼ aH=½2��ð1� �2Þ‘2p�. The curvature of the (quan-

tum) CS connection vanishes everywhere on H except at
the position of the defects where we find conical singulari-

ties of strength encoded in the quantum operators Ĵip.

The solutions of (11) restricted to the graph � are found
to be elements of the Hilbert space [6]

H � ¼ M
fjpgp2�\H

H inv
� ðfjpgÞ �H CS

k ðfjpgÞ; (12)

where H inv
� ðfjpgÞ is a proper subspace of H B

�ðfjpgÞ
spanned by area eigenstates, and H CS

k ðfjpgÞ are the CS

Hilbert spaces which turn out to be completely determined
by the total spin of punctures fjpg [9]. The full Hilbert

space of solutions of (11) is obtained as the projective limit
of the spacesH �. The IH boundary condition implies that

lapse must be zero at the horizon so that the scalar con-
straint is only imposed in the bulk.

The entropy of the IH is computed by the formula S ¼
trð�IH log�IHÞ where the density matrix �IH is obtained by
tracing over the bulk d.o.f., while restricting to horizon
states that are compatible with the macroscopic area pa-
rameter aH. Assuming that there exist at least one solution
of the bulk constraints for every admissible state on the
boundary, the entropy is given by S ¼ logðN Þ where N
is the number of horizon states compatible with the given
macroscopic horizon area aH. After a moment of reflection
one sees that

N ¼ X
n;ðjÞn

1

dim½H CS
k ðj1 � � � jnÞ�; (13)

where the labels j1 � � � jp of the punctures are constrained

by the condition

aH � � � 8��‘2p
Xn
p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpðjp þ 1Þ

q
� aH þ �: (14)

Similar formulas were first used in [10].
It turns out that due to (14) we can compute the entropy

for aH 	 B‘2p (not necessarily infinite). The reason is that

the representation theory of Uq½SUð2Þ�—describing H CS
k

for finite k—implies

dim½H CS
k ðj1 � � � jnÞ� ¼ dim½Invð�pjpÞ�; (15)

as long as all the jp as well as the interwining internal spins

are less than k=2. But for Immirzi parameter in the range

j�j � ffiffiffi
3

p
this is precisely granted by (14) [6]. All this

simplifies the entropy formula considerably. The previous
dimension corresponds to the number of independent states
one has if one models the black hole by a single SUð2Þ
intertwiner.
Let us conclude with a few remarks.
We have shown that the spherically symmetric isolated

horizon is described by a symplectic form �M that, when
written in the (connection) variables suitable for quantiza-
tion, acquires a horizon contribution corresponding to an
SUð2Þ CS theory. Our derivation of the (conserved) sym-
plectic structure is straightforward. We first observe that
SUð2Þ and diffeomorphism gauge invariance is not broken
by the IH boundary condition: they continue to be degen-
erate directions of �M on shell. This by itself is then
sufficient for deriving the boundary term that arises when
writing the symplectic structure in terms of Ashtekar-
Barbero connection variables (see also [6]).
Note that no d.o.f. is available at the horizon in the

classical theory as the IH boundary condition completely
fixes the geometry at � [the IH condition allows a single
(characteristic) initial data once aH is fixed (see Fig. 1)].
Nevertheless, nontrivial d.o.f. arise as would be gauge
d.o.f. upon quantization. These are described by SUð2Þ
CS theory with (an arbitrary number of) defects which
couple to gauge d.o.f. through the dimensionless parameter

16�2�ð1� �2Þ‘2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þp

=aH, i.e., the ratio of a basic

quantum of area carried by the defect to the total area of the
horizon. These would-be gauge excitations are entirely
responsible for the entropy.
We obtain a remarkably simple formula for the horizon

entropy: the number of states of the horizon is simply given
in terms of the (well-studied) dimension of the Hilbert
spaces of CS theory with punctures labeled by spins,
which—due to the area constraint (14), and for the range

j�j � ffiffiffi
3

p
including the physical value of � [11]—is just

the dimension of the singlet component in the tensor
product of the representations carried by punctures. The
black hole density matrix �IH is the identity on Invð�pjpÞ
for admissible jp. Similar counting formulas have been

proposed in the literature [12] by means of heuristic argu-
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ments. Our derivation from first principles, in particular,
clarifies previous proposals.

General arguments and simple estimates indicate that
the entropy will turn out to be SBH ¼ �0aH=ð4�‘2pÞ, where
�0 is a constant to be determined. The new counting
techniques of [13] are expected to be very useful for this.
Thus the result to leading order remains unchanged.
However, subleading corrections will have the form �S ¼
� 3

2 logaH [instead of �S ¼ � 1
2 logaH in the Uð1Þ treat-

ment] matching other approaches [14]. This is due to the
full SUð2Þ nature of the IH quantum constraints imposed
here, and this is a clear-cut indication that the Uð1Þ treat-
ment overcounts states. The value �0 and the log cor-

rection has been recently computed for j�j< ffiffiffi
3

p
[11].

The range j�j 
 ffiffiffi
3

p
is unphysical as the quantum group

structure imposes additional constraints driving the en-
tropy below the physical value aH=4.

In Ref. [4] the classical description of the IH was first
done in terms of the null tetrad formalism. In this case the
null surface defining the Horizon provides the natural
structure for a partial gauge fixing from the internal gauge
SLð2;CÞ to Uð1Þ. In this setting one fixes an internal
direction ri 2 suð2Þ and the IH boundary condition (6)
becomes

dV þ 2�

aH
�iri ¼ 0; �ixi ¼ 0; �iyi ¼ 0; (16)

where xi, yi 2 suð2Þ are arbitrary vectors completing an
internal triad. In the quantum theory [3] only the first of the
previous constraints is imposed strongly, while—due to the
noncommutativity of �i in LQG—the other two can only
be imposed weakly, namely, in [3] one has h�ixii ¼
h�ixii ¼ 0. However, this leads to a larger set of admis-
sible states (over counting). To solve this problem, within
the Uð1Þ model, one would have to solve the two con-
straints �ixi ¼ 0 ¼ �iyi at the classical level first, imple-
menting the reduction also on the pullback of two forms�i

on H. However, this would introduce formidable compli-
cations for the quantization of the bulk degrees of freedom
in terms of LQG techniques. Our SUð2Þ treatment resolves
this problem as now the three components of (6) are first
class constraints. Dirac implementation leads to a smaller
subset of admissible surface states that are relevant in the
entropy calculation.
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[11] I. Agulló, J. Fernando Barbero G., E. F. Borja, J. Dı́az-

Polo, and E. J. S. Villaseñor, Phys. Rev. D 80, 084006
(2009).

[12] C. Rovelli, Phys. Rev. Lett. 77, 3288 (1996); E. Livine and
D. Terno, Nucl. Phys. B741, 131 (2006).
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