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Quantum discord, a measure of genuinely quantum correlations, is generalized to continuous variable
systems. For all two-mode Gaussian states, we calculate analytically the quantum discord and a related
measure of classical correlations, solving an optimization over all Gaussian measurements. Almost all
two-mode Gaussian states are shown to have quantum correlations, while for separable states, the discord
is smaller than unity. For a given amount of entanglement, it admits tight upper and lower bounds. Via a
duality between entanglement and classical correlations, we derive a closed formula for the Gaussian
entanglement of formation of a family of three-mode Gaussian states.
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Entanglement, nonclassicality, and nonlocality are
among the pivotal features of the quantum world. While
for pure quantum states these concepts are like three facets
of the same gemstone, they correspond to different resour-
ces in the general case of mixed states. Namely, while
entanglement plays a central role in quantum communica-
tion [1], its necessity for mixed-state quantum computation
is still unclear [2]. Conversely, several recent studies have
shown that separable (that is, not entangled) states, tradi-
tionally referred to as “‘classically correlated,” might retain
some signatures of quantumness with potential operational
applications for quantum technology [3-6]. One such sig-
nature is the quantum discord [7], which strives at captur-
ing all the quantum correlations in a bipartite state, in-
cluding—but not restricted to—entanglement. Significant
progress in quantum information theory and implementa-
tion of quantum protocols has been recorded for both
qubits and continuous variable systems [8]. However, there
persists a fundamental gap between finite- and infinite-
dimensional systems concerning the investigation of
more general measures of quantumness versus classicality
[9]. For Gaussian states, the workhorses of continuous
variable quantum information, such an investigation would
be especially valuable, since in view of the positivity of
their Wigner distribution, these states have sometimes been
tagged as essentially classical.

In this Letter we endeavor to bridge this gap. We define
the quantum discord for Gaussian states and explicitly
solve the optimization problem involved in its definition,
constrained to measurements that preserve the Gaussian
character of the states. We derive a closed formula for the
ensuing Gaussian quantum discord and for a related mea-
sure of classical correlations [10] on all two-mode
Gaussian states. We prove that these quantum correlations
are limited for separable Gaussian states, yet they are
nonzero for all but product states. For entangled states,
quantum discord admits tight upper and lower bounds,
given by functions of the Gaussian entanglement of for-
mation [11]. Exploiting a duality between entanglement
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and classical correlations [12], we calculate exactly the
Gaussian entanglement of formation of a class of mixed
three-mode states. Our results unveil the general structure
and nature of bosonic Gaussian correlations.

Quantum discord [7] originates from the discrepancy
between two classically equivalent definitions of mutual
information, a measure of total correlations in a quantum
state. For classical probability distributions, the quantities
I(A:B) = H(A) + H(B) — H(A, B), J(A:B) = H(A) —
H(A|B), and J(B:A) = H(B) — H(B|A) all coincide due
to Bayes’ rule, where H is the Shannon entropy and the
conditional entropy H(A|B) is an average of the Shannon
entropies of A conditioned on the alternatives of B. For a
bipartite quantum state Q4p, the mutual information
can be defined as I(sp) = S(@4) + S(@p) — S(@4p),
where S stands for the von Neumann entropy, S(@) =
—Tr(p logp) (throughout the paper, log denotes the natural
logarithm). The quantum analogue of J(A:B), known as a
one-way classical correlation and denoted as 7 (Q4p), is
operationally associated with the distillable common ran-
domness between the two parties [13], and depends on the
measurements {I1;}, ¥, I1; = 1, made on B [10]. The state
of A after the measurement is given by Q4 =
Trg(Qagll;)/pis i = Tra p(Q4pll;). A quantum analogue
of the conditional entropy can then be defined as
H{Hi}(AIB) = Y, p:S(Qa4);), and the one-way classical cor-
relation, maximized over all possible measurements, takes
the form J(@ap) = S(Q4) — infyyy . H 11 ,(AIB). The
quantum discord is finally defined as total minus classical
correlations:

D(0ap) = 1(Qap) — T ~(Cap)
= S(ep) — S(@ap) + {illll_f}g"[{n,}(A|B)~ (D

We denote by J(045) and D~(945) the corresponding
(generally different) quantities, where the roles of A and B
are swapped. On pure states, quantum discord coincides
with the entropy of entanglement S(0z) = S(0,4). States
with zero discord represent essentially a classical proba-
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bility distribution embedded in a quantum system, while a
positive discord, even on separable (mixed) states, is an
indicator of quantumness that arises, e.g., when Q45 has
entangled eigenvectors [6,14], and may operationally be
associated with the impossibility of local broadcasting [4].

We now define a Gaussian version of quantum discord
and calculate it analytically for all two-mode Gaussian
states. A two-mode Gaussian state Q45 is fully specified,
up to local displacements, by its covariance matrix (CM)
o, of elements o;; = Tr{ @R, I?j}+], where R =
(R4, Pa, X, Pp) is the vector of phase-space operators [9].
By means of local unitary (symplectic at the CM level)
operations, every two-mode CM can be transformed in a
standard form with diagonal sub-blocks,

—(® 7
O 4B ( YA ), (2)
with @ = al, B = b1, and y = diag{c, d}. Let us define
the symplectic invariants A = deter, B = detf3, C = dety,
and D = deto,5. The CM corresponds to a physical state
iff A, B = 1and v. = 1, where the symplectic eigenvalues
are defined by 22 = A + VA? — 4D withA = A+ B +
2C. A Gaussian state with CM o4 is entangled iff 7_ < 1,
where the smallest symplectic eigenvalue #_ of the par-
tially transposed CM is obtained from »_ by replacing C
with —C (i.e., by time reversal) [15].

Both 7 and D~ are invariant under local unitaries
[7,10]. Hence, we can derive their closed formulas by
exploiting the standard form of a general two-mode
Gaussian state, and we can later recast our results in terms
of the four invariants. The Gaussian quantum discord of a
two-mode Gaussian state 045 can be defined as the quan-
tum discord where the conditional entropy is restricted to
generalized Gaussian positive operator valued measure-
ments (POVMs) on B. These measurements are all exe-
cutable using linear optics and homodyne detec-
tion [16]. We then have D (0,5) = S(0g) — S(045) +
infyy, () fdan(n)S(QAn). Here the Gaussian measure-
ment I1;(n) on subsystem B can be written, in general,
as Ip(n) = 7' Wy(nIGWy(n). where  Wp(n) =
exp(nbt — n*b) is the Weyl operator, b= (%5 +
ipg)/N2, ' [d®>nllg(n) = 1, and 1% is the density
matrix of a (generally mixed) single-mode Gaussian state.
The conditional entropy is a concave function of the
POVM elements; i.e., it is concave on the set of single-
mode Gaussian states I1%. Gaussian states do not form a

convex set, yet every Gaussian state admits a convex
|

2C2+(—14B)(—A+D)+2|Cly/C2+(—1+B)(—A+D)

decomposition into pure Gaussian states. Thus, it is suffi-
cient (as in the finite-dimensional case) to restrict to states
HOB that are pure, single-mode Gaussian states [17] whose
CM we denote as . The conditional state @4, of sub-
system A after the measurement I1;(7) on B has a CM
independent of the measurement outcome [16] and given
by € =a — y(B + oy) 'y". Recalling then that the
von Neumann entropy of an n-mode Gaussian state with
CM o can be computed as [18] S(or) = YN | f(v;), where
v; are the symplectic eigenvalues of the state and f(x) =
() log[*H] — (*51) log[*51], the one-way classical cor-
relation and the Gaussian quantum discord for two-mode
Gaussian states with CM o4 are

D (o) = [(VB) = f(v-) = f(vy) + inff(Vdete)
T (oap) = f(VA) — inff(Vdete). 3)

To get closed formulas we need to minimize det(g) over all
CMs o corresponding to pure one-mode Gaussian states,
i.e., rotated squeezed states: oy = R(#)diag{A, 1/A}RT(0),
where A =0 and R(6) = {[cos0, sinf], [— sinb, cosH]}.
For a general two-mode Gaussian state in standard form,
one has E(A 0)=det(e)=[2a*(b+ A)(1+bA)—a(c*+
d*)2bA+ A2+ 1)+ a(c® — d*)(A* — 1) cos(26) + 2c*d* A]/
[2(b+A)(1+bA)]. We set, without loss of generality,
¢ = |d|. We now look for stationary points of E by study-
ing its partial derivatives. One such point is A = 1, for
which o is the identity (regardless of #) and is a
saddle point except when d = *c¢. Next, the equation
d,E = 0 is quadratic in A, but one of its roots is always
negative. The other root, given by A = A, = [ab(d* —
) + cld(a — ab? + bc?)(a — ab® + bd?)]/[ab*c? —
(a + bc?)d?] and 6 = 0 (or, equivalently, 1/A, and 6 =
7r/2), is a local minimum and is acceptable provided that
A, =0, that is, when 8 = [—ac? + b(ab — ¢?)c3] = 0.
Additional candidates for infE have to be sought at the
boundaries of the parameter space: a potential minimum
lies at A — 0, @ = 0 (or, equivalently, A — oo, § = 77/2).
In the whole physically allowed region for the CM parame-
ters a, b, ¢, and d, we have E(1, 0) = E(A,, 0), with equal-
ity holding only when d = *¢, and E(X,, 0) = E(0,0).
Thus, for any @4z, inf,, det(g) is equal to E(A,, 0) if § =
0 and to E(0, 0) otherwise. In terms of symplectic invari-
ants, the Gaussian quantum discord and the one-way clas-
sical correlation for a general two-mode Gaussian state
o ,p are given by Eq. (3) with

(—1+B)?

_ 2 — 2 .
(D — AB)?> = (1 + B)C*(A + D); @

E™Min = inf det(e) =
o)

AB—C2+D—+/C*+(~AB+D)*—2C*(AB+D)

2B

otherwise.

For states falling in the second case of Eq. (4), homodyne measurements (projections onto infinitely squeezed states, A =
0) on B minimize the conditional entropy of A. An example is when

A=D=d?

C=(1-1B)/2

B = b?, (5)
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with 1 = b = 2a — 1, which is a mixed state of partial
minimum uncertainty [9]. On the other hand, the first case
corresponds to a more general measurement, i.e., projec-
tion of mode B onto a squeezed state with unbalanced,
finite variances on Xz and pp. A notable class of states
satisfying the first case are squeezed thermal states (in-
cluding pure states), characterized by d = *¢, for which
the conditional entropy is, in particular, minimized by
heterodyne measurements (projection onto coherent states,
A =1). In general, Gaussian quantum discord can be
accessed experimentally by linear optics.

We now analyze the relationships between classical
correlations, quantum discord, separability, and entangle-
ment. For every entangled state the quantum discord is
strictly positive [since S(0g) — S(045) > 0]. Almost all
separable states in finite dimensions also have nonzero
discord [5]. In any dimension (including infinite dimen-
sions under the constraint of finite mean energy), the states
045 With zero discord are the ones that saturate the strong
subadditivity inequality for the von Neumann entropy on a
tripartite state 0,pc, where C is an ancillary system real-
izing the measurements on B [14,19]. From the character-
ization of such states in the Gaussian scenario [20] (see
Appendix A in [21] for more details), it follows that the
only two-mode Gaussian states with zero Gaussian quan-
tum discord are product states o,z = @ ® f3, i.e., states
with no correlations at all, that constitute a zero measure
set. Quite remarkably, then, all correlated two-mode
Gaussian states have nonclassical correlations certified by
a nonzero quantum discord.

For Gaussian states with asymptotically diverging mean
energy, however, interesting correlation structures arise.
Consider the squeezed thermal state given by

a = cosh(2s),
¢ = —d = coshr sinh(25s).

b = cosh?rcosh(2s) + sinh?r,
(6)

For » =0, this is a pure two-mode squeezed vacuum
state, whose entanglement is an increasing function of s.
In the limit r — oo, it is asymptotically separable (but
not in product form). Concerning the discord (minimized
in this example by heterodyne detections), we find
D~ (o s5) = flcosh’rcosh(2s) + sinh?>r] — flcosh?r +
cosh(2s)sinh?r] == 0 and D~ (0 4z) = flcosh(2s)] —
flcosh?r + cosh(2s)sinh?r] + flcosh(2r)] "= 1. While
these limiting values are associated with ideal, unnorma-
lizable states, they can be approached arbitrarily close by
physical Gaussian states with large, but finite mean energy.
Hence, surprisingly, there exist bipartite Gaussian states
such that (i) they are nonproduct states, with an arbitrarily
large correlation matrix 7, yet have infinitesimal quantum
discord, and (ii) their quantum correlations can be revealed
by probing only one subsystem, but not the other. Thus
motivated, we have explored the discord asymmetry for
1 X 10° randomly generated (separable and entangled)
two-mode Gaussian states. Let D™ = max{D—, D},

Dmin = min{D~, D~} for a given CM. We find numeri-
cally that DM — Pmin < Pmin fexp(Pmin) — ] =< 1.
The leftmost bound is saturated by states of Eq. (6) in the
limit s — oo, and unity is reached for r — oo as well. The
maximum discord asymmetry decays exponentially with
Dmin 5o when the discord calculated either way is large,
we have de facto D~ = D™,

Next we ask the following question: To what extent can
separable Gaussian states be quantumly correlated? While
their discord is typically nonzero (except for product
states), we find that it cannot exceed one unit of informa-
tion [Fig. 1 (left panel)]. In Appendix B in [21] we prove
that for all two-mode separable Gaussian states,
D=(op) = [(b —1)/2]log[(b +1)/(b — 1)] = 1. The
first inequality is saturated by separable squeezed thermal
states whose correlation matrix has a maximum determi-
nant C and whose CM has maximum asymmetry between
the two modes: c =d=1+ab —a — b, a— o [solid
(red) curve in Fig. 1 (left panel)]. The second bound is
reached for b — oo. This implies a sufficient condition for
the entanglement of Gaussian states given their discord: if
D~ (oa5) > 1, then 045 is entangled.

We now focus on entangled states, and study how
Gaussian quantum discord compares quantitatively to the
entanglement of the states, specifically measured by the
most ‘“‘compatible” measure available, the Gaussian en-
tanglement of formation (Gaussian EoF) £ [11]. This is
defined for Gaussian states Q45 as the convex roof of the
von Neumann entropy of entanglement, restricted to de-
compositions of Q45 into pure Gaussian states. This can be
evaluated via a minimization over CMs: E;(045) =

infy! <40 dget(o,,)—1f(Vdeta'), where the infimum runs
over all pure bipartite Gaussian states with CM o7,
smaller than o 45, and @’ is the reduction of &”,, corre-
sponding to the marginal state of mode A. Compact for-
mulas for £; exist for all symmetric two-mode states
(where the Gaussian EoF coincides with the true EoF, as
the Gaussian decomposition is optimal) [22], as well as
asymmetric ones [11,23]. In Fig. 1 (right panel), we plot
D~ vs E; for 30000 randomly generated two-mode
Gaussian states. We find that for a given entanglement
degree, the discord is bounded both from above and below.
To find the upper bound analytically, we can restrict, as in
the separable case, to squeezed thermal states (see [21])
with d = —c. Further optimization within this family of
states yields that, for all two-mode entangled Gaussian
states, the quantum discord satisfies

D (0 45) = max{E;(o4p), 2cosh’rlog(cothr)},  (7)

where E5(o,5) = f(1 + 2sinh~?r) implicitly defines r. The
rightmost bound [solid (red) curve in Fig. 1 (right panel)]
dominates in the low entanglement regime (£5 < 210g2)
and corresponds to D~ of the states of Eq. (6) in the limit
s — o0, The leftmost bound in Eq. (7) [dotted (green) line
in Fig. 1 (right panel)] is instead reached on pure states, and
sets an upper limit to the quantum discord of all two-mode
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separable states

entangled states

FIG. 1 (color online). Left panel: Gaussian quantum discord
versus marginal entropy for separable two-mode Gaussian states.
Right panel: Gaussian quantum discord versus Gaussian EoF for
entangled two-mode Gaussian states. See text for details of the
bounding curves.

Gaussian states with sufficiently high entanglement. On the
other hand, for a given &g, the Gaussian discord also
satisfies D~ (o 45) = 21og(cothr), with r as before. This
lower bound follows from the fact that states of Eq. (6)
with s — oo are extremal for the discord asymmetry, and
corresponds to D~ of those states [dashed (blue) line in
Fig. 1 (right panel)]. Interestingly this entails that, asymp-
totically, for all two-mode Gaussian states with £5 > 0,
their discord lies between £; — 1 and &g.

A further key result of our study is that Eq. (4) provides a
closed, computable formula for the Gaussian EoF of a class
of three-mode mixed Gaussian states. This is possible
thanks to a duality relation between (Gaussian) classical
correlations and (Gaussian) EoF [12]. Let Q4 psr be a
purification of Q,p, i.e., a pure (Gaussian) state such that
Trerl@apsr] = Qap (We need, in general, two ancillary
modes S and 7 to construct such a purification [18]).
Then, J(@ap) + E(Qasr) = S(04), where E(Qasr) de-
notes the EoF between party A and the block of modes
ST. In the Gaussian framework, from Eq. (3) we have
simply Eg(o457) = inf, f(+/dete). The states with CM
o ,s7 encompass all three-mode Gaussian states that are
reductions of a four-mode pure Gaussian state. Their sym-
plectic spectrum is of the form {1, 1, b}; i.e., they are mixed
states of partial minimum uncertainty, with two vacua
as normal modes. For all such states, we now present
an analytic method to compute the Gaussian EoF across
the bipartition A X (ST): first, construct a purifica-
tion; i.e., append an ancillary mode B [with det(op) =
det(o457) = b?] such that o ,pz¢; is pure [11,18]. Then,
evaluate E™" of the marginal state o,z from Eq. (4).
Finally, f(~VE™") is the Gaussian EoF between A and
ST. An example of such a state, of relevance in a crypto-
graphic setting, is provided in [21] (Appendix C).

For states o4 with ¥_ = 1, the purification requires a
single ancillary mode S, and the Gaussian EoF between
modes A and S, as computed through Eq. (4), agrees with
the formula derived in [23]. In particular, for the states of
Eq. (5), the complementary state of modes AS is symmet-
ric; the findings of Ref. [22] thus imply that the Gaussian
POVM devised here is globally optimal for the calculation
of their (unconstrained) quantum discord. For general two-

mode Gaussian states, it is an open question whether non-
Gaussian measurements (e.g. photo-detection) can lead to
a further minimization of the discord.

This Letter paves the way for the study of general quan-
tum correlations in multimode harmonic lattices, and
through the paradigmatic two-mode case, demonstrates
the “truly quantum’ nature of Gaussian states, reinforcing
their key role in quantum information processing.

We thank M. Guta for discussions. A.D. was supported
by EPSRC Grant No. EP/C546237/1 and the EU Integrated
Project QAP, and was at Imperial College, London when
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Note added—After completion of our study, another
work appeared [24] where Gaussian quantum discord is
independently defined, and explicitly computed only for
two-mode squeezed thermal states.
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