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Quantum teleportation faces increasingly demanding requirements for transmitting large or even

entangled systems. However, knowledge of the state to be transmitted eases its reconstruction, resulting

in a protocol known as remote state preparation. A number of experimental demonstrations to date have

been restricted to single-qubit systems. We report the remote preparation of two-qubit ‘‘hybrid’’ entangled

states, including a family of vector-polarization beams. Our single-photon states are encoded in the photon

spin and orbital angular momentum. We reconstruct the states by spin-orbit state tomography and

transverse polarization tomography. The high fidelities achieved for the vector-polarization states opens

the door to optimal coupling of down-converted photons to other physical systems, such as an atom, as

required for scalable quantum networks, or plasmons in photonic nanostructures.
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Quantum communication involves the transfer of quan-
tum information, either directly by sending the quantum
states or indirectly by using quantum and classical resour-
ces. The cost of indirect transfer involves a trade-off be-
tween ebits, units of entanglement, and cbits, units of
classical communication, which depends on what is known
about the state to the sender and receiver. For example, in
teleportation [1], an unknown quantum state is sent via a
quantum channel, consuming 1 ebit, and 2 bits of classical
communication. In contrast, if the state is known to the
sender, the required resources can be reduced to 1 ebit and
1 cbit, in a protocol named remote state preparation (RSP)
[2–5]. This variant of teleportation has received much
attention lately, given its reduced resource requirements
and known optimal schemes and trade-offs [6–8].

In RSP, Alice wishes to prepare a state in Bob’s labora-
tory by relying on the correlations of shared entangled
states and classical communication. RSP not only requires
fewer resources than teleportation, but also escapes the
need for Bell-state analysis (BSA), impossible with linear
optics, but enabled by hyperentanglement [9–12]. RSP has
been realized for arbitrary one-qubit states with varying
efficiencies. The first demonstration was 50% efficient
[13], at the price of 1 ebit and 1 cbit, due to the impossi-
bility of a universal NOT operation on arbitrary qubit states.
Subsequent demonstrations achieved 100% efficiency in
principle, but required as many resources as teleportation
(1 ebit, 2 cbits) [14,15]; however, BSAwas not necessary.

In this Letter, we show that by working in a larger
Hilbert space, RSP can be extended to remotely prepare
multiqubit states, including entangled states [16]. We im-
plement this protocol with a cost of 2 ebits, and 2 cbits of
forward classical communication (4 cbits for sending com-
pletely arbitrary pure states, as shown below). We then
extend it to prepare mixed states and a four-parameter
family of pure states. The latter includes a remarkable

family of states with nonuniform transverse polarization,
so-called vector-polarization states [17]. These states are
important for their applications in improved metrology
[18], ideal production of plasmons [19], and in principle
100%-efficient coupling to an atom [20].
Specifically, by using hyperentanglement, i.e., systems

simultaneously entangled in multiple degrees of freedom
[21,22], we remotely prepare single-photon states en-
tangled in their spin and orbital angular momentum
(OAM) [12]. Such ‘‘hybrid’’ entanglement [23–27] be-
tween the polarization and the spatial mode of a single
photon can be easily converted into a spatially separated
single-particle state established to be entangled [28]. In our
remote entangled-state preparation (RESP) protocol, Alice
and Bob share a hyperentangled pair, e.g., a product of Bell

states of polarization and spatial modes �þ
spin ��þ

orbit �
ðjHHi þ jVViÞ= ffiffiffi

2
p � ðjlri þ jrliÞ= ffiffiffi

2
p

, where H (V) rep-
resents the horizontal (vertical) photon polarization and
l (r) represents the paraxial spatial mode (Laguerre-
Gauss) carrying þ@ (�@) units of OAM [29]. For opera-
tions on individual photons, we rewrite the shared state in
the single-photon basis as [12]

�þ
spin ��þ

orbit ¼
1

2
ð�þ

A � cþ
B þ��

A � c�
B

þ cþ
A ��þ

B þ c�
A ���

B Þ; (1)

where the single-photon ‘‘spin-orbit’’ states have the Bell-
state form: ��� 1ffiffi

2
p ðjHli�jVriÞ, c�� 1ffiffi

2
p ðjHri�jVliÞ.

Thus, when Alice measures her photon (A) with a spin-
orbit BSA, the state of Bob’s photon (B) is projected into
one of the four spin-orbit entangled states ��

B , c
�
B , ac-

cording to Alice’s outcome c�
A , �

�
A . Alice can remotely

prepare Bob’s single photon into a desired spin-orbit en-
tangled state by letting him know the correcting unitary
transformation in 2 cbits; e.g., to prepare cþ

B , Alice tells
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Bob to do nothing if her outcome is �þ
A , transform V !

�V for ��
A , H $ V for cþ

A , or V ! �V and H $ V for

c�
A .
We implemented this RESP protocol using our spin-

orbit BSA and tomographically reconstructed the remotely
prepared states (Fig. 1; for details on our source and spin-
orbit BSA, see [12,30]). The tomographic measurements
are similar to those used for hyperentangled states [22], but
in this case applied only to Bob’s photon. The spin-orbit
state tomography consists of polarization tomography,
performed by liquid crystals and a polarizing beam splitter
(PBS), and spatial-mode tomography, realized by mode-
transforming holograms and single-mode fibers. Fig-
ures 2(a)–2(d) show the reconstructed density matrices of
the four canonical, remotely prepared, spin-orbit Bell
states. The high quality of the prepared states is captured
in Table I, where we quote their fidelity with the target
state, degree of entanglement (tangle), and mixture (linear
entropy) [31].

Note that the spin and orbit d.o.f. of Bob’s particle
become entangled without local interaction; the above
protocol thus realizes entanglement swapping. However,
instead of swapping the entanglement between two pairs of
particles, here the swapping occurs between pairs of de-
grees of freedom. The high quality of our scheme (mea-
sured fidelities � 95%), compares favorably to the best
reported for entanglement swapping [32].

In order to use the protocol to remotely prepare mixed
states, Alice needs to induce decoherence on Bob’s photon.
One way to achieve this is by entangling the quantum
system to yet another of its d.o.f., which is then traced

over. This technique has previously enabled the precise
remote preparation of single-qubit mixed states [13].
There, Alice coupled her photon’s polarization and fre-
quency d.o.f. followed by a frequency-insensitive measure-
ment, thus preparing Bob’s photon in a mixed state.
Similarly, for RESP, Alice can couple the OAM and fre-
quency d.o.f. by detuning the spin-orbit BSA interferome-
ter. After a frequency-insensitive measurement, Alice
measures spin-orbit mixed states, preparing Bob’s photon
in a controllable spin-orbit mixed state.
Alternatively, we can trace over Alice’s photon spin and/

or orbital d.o.f. or a subspace of them. For example, con-
sider the spin-orbit BSA without either half-wave plates
(HWPs) or PBSs (see Fig. 1). In this case, instead of the
outcomes �þ

A and ��
A (cþ

A and c�
A ) we only have the

outcome �A (c A). Consequently, when a pair in the state
of Eq. (1) is shared and Alice detects a photon in �A (c A),
Bob’s photon is prepared in the classically correlated state
�jcþiBhcþj þ jc�iBhc�j ¼ jHrihHrj þ jVlihVlj or
�j�þiBh�þj þ j��iBh��j ¼ jHlihHlj þ jVrihVrj, at
the cost of 1 cbit. In addition, by acting on Alice’s polar-
ization (as discussed below), we can also prepare classi-
cally correlated states in other bases. Furthermore, if both

FIG. 1 (color). Experimental setup for the remote preparation
of single-photon entangled and vector-polarization states. LC,
liquid crystals (LC1 for state preparation, LC2 for polarization
tomography) with optic axis perpendicular to the beam and
oriented as indicated (+, �); BSA, Bell-state analyzer; QWP,
quarter-wave plate; HWP, half-wave plate; SMF, single-mode
fiber; APD, avalanche photodiode; PBS, polarizing beam split-
ter; holo, forked binary-grating hologram; tomo holo, holograms
for spatial-mode tomography [22].

FIG. 2 (color). Experimental density matrices (real parts) of
remotely prepared single-photon two-qubit states. (a)–
(d) Maximally entangled spin-orbit states, (e),(f) partially mixed
states, and (g) completely mixed state. Family of vector-
polarization states, (h)–(k), with their ideal polarization profiles
shown underneath [spatial-mode component of the density ma-
trix shown in the basis jh=vi ¼ ðjli � jriÞ= ffiffiffi

2
p

]. The average
magnitude of all imaginary elements, not shown, is 0.02.
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spin and OAM of Alice’s photon are ignored, Bob’s photon
is left in a two-qubit completely mixed state (without clas-
sical communication). We efficiently prepared such clas-
sically correlated and completely mixed states, whose re-
constructed density matrices are shown in Figs. 2(e)–2(g).

We can readily remotely prepare a particularly interest-
ing four-parameter family of states by acting on Alice’s
photon polarization and implementing a modified spin-
orbit BSA. Alice and Bob initially share the hyperen-
tangled state �þ

pol ��þ
spa. Alice then applies to her photon

the polarization unitary operation: jHi ! cos�jHi þ
ei� sin�jVi, jVi ! ei�ðsin�jHi � ei� cos�jViÞ; or

eið�þ�Þ=2Rzð�ÞRyð2�ÞRzð�Þ, in terms of the Bloch rotation

operators, implemented using the LC1 liquid crystals (see
Fig. 1). Next, Alice measures her photon with a ‘‘rotated’’
spin-orbit BSA:

�þ
A ð�Þ � cos�jHriA þ sin�jVliA;

��
A ð�Þ � sin�jHriA � cos�jVliA;

cþ
A ð�Þ � cos�jHliA þ sin�jVriA;

c�
A ð�Þ � sin�jHliA � cos�jVriA:

Such a measurement consists of a spin-orbit BSA in which
the last polarization measurement is made at the angle �
(�) instead of 45� for the�� (c�) output; experimentally,
� and � are set with HWPs before the final PBS in Alice’s
setup, as shown in Fig. 1.

Taking into account the unitary polarization operation
and the rotated spin-orbit BSA, we can rewrite the shared
state as

�þ
spin ��þ

oam ! �þ
A ð�Þ ��þ

B ð�;�; �;�Þ
þ��

A ð�Þ ���
B ð�;�; �;�Þ

þ cþ
A ð�Þ � cþ

B ð�;�; �;�Þ
þ c�

A ð�Þ � c�
B ð�;�; �;�Þ;

where Alice’s possible outcomes ��
A ð�Þ or c�

A ð�Þ deter-
mine Bob’s state:

�þ
B ð�;�; �;�Þ � cos�j�; ri þ ei� sin�j�?; li;

��
B ð�;�; �;�Þ � sin�j�; ri � ei� cos�j�?; li;

cþ
B ð�;�; �;�Þ � cos�j�; li þ ei� sin�j�?; ri;

c�
B ð�;�; �;�Þ � sin�j�; li � ei� cos�j�?; ri;

with j�i � cos�jHi � ei� sin�jVi and j�?i � sin�jHi þ
ei� cos�jVi.
The states in this four-parameter family have the re-

markable property that their transverse polarization pro-
files are not in general uniform [33]. Of outstand-
ing interest is the family of states 1ffiffi

2
p ðjRri � jLliÞ and

1ffiffi
2

p ðjRli � jLriÞ, because of their potentially useful polar-

ization profiles [see Figs. 2(h)–2(k)]. In particular, states
with radial polarization profiles [17], such as jRri �
jLli ¼ jHvi þ jVhi, have enabled a focused spot size
significantly smaller than possible with linear polarization
[18]. Theoretically, such states have also been shown to
enable the largest possible longitudinal electric field com-
ponent in the focal point of a lens [34], leading to optimal
coupling to plasmons in subwavelength-diameter holes
[19]. Additionally, the radial polarization state is predicted
to enable 100% light-atom coupling in free space [20],
albeit with a somewhat different radial amplitude
distribution.
We remotely prepared a variety of examples from this

family of states. Alice’s liquid crystals LC1 implement the

required polarization unitary, jHAi ! ðjHAi þ jVAiÞ=
ffiffiffi
2

p
,

jVAi ! iðjHAi � jVAiÞ=
ffiffiffi
2

p
. After measuring Alice’s pho-

ton with a spin-orbit BSA, we tomographically recon-
structed the states of Bob’s photon, resulting in the
density matrices shown in Figs. 2(h)–2(k).
In order to directly verify the vector profile of the

remotely prepared modes, we also implemented a direct
transverse polarization tomography. On Bob’s beam, at a
location with a beam waist size of 1.15(5) mm (measured
with the Gaussian component of the down-converted
beam), we transversely scanned a 500-�m diameter pin-
hole in 200-�m steps. At each point in a 16� 16 grid, we
performed a polarization tomography (6 measurements,
5-sec acquisition time for each). The results of the recon-
struction are shown in Fig. 3. We found the expected
position of the center of the beam by maximizing the
overlap between our measurements and those expected
for an ideal beam with our measured waist. As shown in
Fig. 3, we achieve a high average fidelity of �95%, over

TABLE I. Quality parameters of remotely prepared two-qubit
states. The first column identifies the states in Fig. 2. Other
columns show each prepared-state fidelity (F) with the target
state, tangle (T), and linear entropy (SL). For mixed states we
used longer acquisition times, leading to smaller uncertainties.
The partially mixed states [2(e) and 2(f)] have an ideal SL ¼ 2=3
and T ¼ 0; all others have SL ¼ 0 and T ¼ 1, except the
completely mixed state 2(g), for which SL ¼ 1 and T ¼ 0. All
errors are calculated from Monte Carlo simulations of
Poissonian counting statistics.

Figure Target state F T SL

2(a) �þ 0.955(2) 0.86(1) 0.06(1)

2(b) �� 0.968(2) 0.90(1) 0.06(1)

2(c) cþ 0.938(3) 0.85(2) 0.07(1)

2(d) c� 0.949(3) 0.85(1) 0.08(1)

2(e) ðjHlihHlj þ jVrihVrjÞ=2 0.967(2) 0.005(2) 0.666(3)

2(f) ðjHrihHrj þ jVlihVljÞ=2 0.961(3) 0.015(3) 0.658(3)

2(g) 1
41 0.986(1) 0.000(1) 0.982(1)

2(h) ðjHhi þ jVviÞ= ffiffiffi
2

p
0.964(3) 0.88(1) 0.07(1)

2(i) ðjHhi � jVviÞ= ffiffiffi
2

p
0.940(5) 0.82(2) 0.06(1)

2(j) ðjHvi þ jVhiÞ= ffiffiffi
2

p
0.938(3) 0.82(1) 0.10(1)

2(k) ðjHvi � jVhiÞ= ffiffiffi
2

p
0.928(3) 0.81(1) 0.12(1)
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all pinhole positions, between the measured and ideal
polarizations.

Having discussed the remote preparation of a specific
four-parameter family of single-photon states, we can now
ask: Can Alice remotely prepare arbitrary pure states
�Bða; b; c; dÞ ¼ a�þ

B þ b��
B þ ccþ

B þ dc�
B (a–d com-

plex)? The answer is indeed ‘‘yes,’’ via the use of positive
operator valued measure, as described online [30].
Furthermore, to remotely prepare arbitrary mixed states,
Alice can prepare the ensemble of pure states fpi; c ig so
that Bob receives �B ¼ P

ipijc B;iihc ij.
In summary, we presented the first demonstration of a

powerful new technique to remotely prepare a wide variety
of single-photon entangled states, using the resource of
hyperentangled photon pairs. Some of the states prepared
are already known to be optimal for several applications
[17], and we anticipate other uses to be revealed by further
investigation. A radial polarization state, for example,
could enable an optimal plasmon-assisted transmission of
entangled photons, remarkably improving earlier demon-
strations using entanglement in a single degree of freedom
(polarization [35], energy-time [36], and OAM [37]).
Furthermore, we have shown how the protocol may be
modified to allow the remote preparation of arbitrary
two-qubit states. It will be interesting to consider the

generalization to include other degrees of freedom as
well, to explore an even richer space of states.
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FIG. 3 (color). Transverse polarization and intensity profiles of
remotely prepared vector beams. For a canonical maximally
entangled spin-orbit state �� � 1ffiffi

2
p ðjHli � jVriÞ, we show

(a) the intensity profiles for each polarization projection and
(b) the polarization profiles from state tomography at each point;
the average fidelity with the target states over all sampled points
is Fav ¼ 95ð4Þ%. (c) Radial polarization, Fav ¼ 94ð4Þ%, and
(d) azimuthal polarization, Fav ¼ 95ð2Þ%. The polarization el-
lipses are shown for a subset of all samples, and their size
suggests the magnitude of state purity, where pure states have
the size of the colored circles (equivalent to the size of the
collection pinhole).
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