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When used in quantum state estimation, projections onto mutually unbiased bases have the ability to

maximize information extraction per measurement and to minimize redundancy. We present the first

experimental demonstration of quantum state tomography of two-qubit polarization states to take

advantage of mutually unbiased bases. We demonstrate improved state estimation as compared to standard

measurement strategies and discuss how this can be understood from the structure of the measurements we

use. We experimentally compared our method to the standard state estimation method for three different

states and observe that the infidelity was up to 1:84� 0:06 times lower by using our technique than it was

by using standard state estimation methods.
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Quantum state estimation is a central problem in the
field of quantum information, with applications in quantum
cryptography, quantum computing, quantum control, quan-
tum measurement theory, and foundational issues in quan-
tum mechanics. The practical techniques used in quantum
state estimation such as quantum state tomography [1]
have been pivotal in the recent progress of experimental
quantum mechanics. Improved techniques for quantum
state tomography therefore impact a wide range of appli-
cations in experimental physics.

While all tomographic schemes that have been imple-
mented to date for more than one particle use projection-
valued measurements, so far none has employed the opti-
mal set of projection-valued measurements, the set with the
property of being mutually unbiased. As we will show,
mutual unbiasedness minimizes informational redundancy
among different measurements, a limitation for all pre-
vious multiparticle state estimation strategies. We experi-
mentally demonstrate the increase in measurement
precision that can be achieved by employing these special
sets of measurements.

Quantum state tomography on qubits involves the mea-
surement of some linearly independent, informationally
complete set of expectation values. A reconstruction based
on linear inversion [2], maximum-likelihood fitting [1], or
an appropriate cost function [3] is then used to calculate the
best-fit density matrix for the data set.

All two-qubit quantum state tomography implementa-
tions to date have constructed a complete, linearly inde-
pendent set of projectors from pairwise combinations of
eigenstates of the Pauli operators [2]. Initial implementa-
tions employed 16 projectors [1], the minimum number
required for completeness. Later it was observed that an
improved estimate of the density matrix could be obtained
by performing tomography with projections onto all 36
tensor products of Pauli eigenstates [4,5]. These 36 pro-
jectors can be arranged into nine bases of four orthogonal
projectors as shown in the left column of Table I. We will

refer to this tomography strategy as standard separable
quantum state tomography (SSQST).
On the face of it, this set of 36 projectors appears

unbiased. Certainly no particular basis or direction is pre-
ferred over any other. If, however, one looks at pairs of
bases, then one notices that some bases share eigenstates of
a particular Pauli operator while others have no eigenstates
in common.
The overlap among projectors from different bases can

be measured by using the Hilbert-Schmidt overlap [2].
Projectors from the first and second bases of the left side
of Table I that share an eigenstate for the first qubit have an
overlap of 0.5, whereas those that are orthogonal in the first
qubit have an overlap of zero. In contrast, bases that differ
in Pauli operators for both qubits have an overlap of 0.25
for all pairs of projectors.
This inequivalence between pairs of bases constitutes a

bias in the measurement scheme. This bias, which will
occur for any complete set of separable projectors, creates
redundancy and limits the efficiency with which new in-
formation about the state can be collected. This is because
in schemes that contain only separable measurements,
correlations can be observed in only one basis at a time.
In contrast, schemes that employ nonseparable measure-

TABLE I. The measurement bases used in SSQST and MUB
QST.

SSQST MUB QST

HH, HV, VH, VV HH, HV, VH, VV
HD, HA, VD, VA RD, RA, LD, LA
HR, HL, VR, VL DR, DL, AR, AL
DH, DV, AH, AV ð1= ffiffiffi

2
p ÞðRLþ iLRÞ, ð1= ffiffiffi

2
p ÞðRL� iLRÞ,

DD, DA, AD, AA ð1= ffiffiffi
2

p ÞðRRþ iLLÞ, ð1= ffiffiffi
2

p ÞðRR� iLLÞ
DR, DL, AR, AL ð1= ffiffiffi

2
p ÞðRV þ iLHÞ, ð1= ffiffiffi

2
p ÞðRV � iLHÞ,

RH, RV, LH, LV ð1= ffiffiffi
2

p ÞðRH þ iLVÞ, ð1= ffiffiffi
2

p ÞðRH � iLVÞ
RD, RA, LD, LA
RR, RL, LR, LL
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ments can probe correlations in multiple single-qubit bases
at once. For example, a singlet-state projection onto

ð1= ffiffiffi
2

p ÞðjHVi � jVHiÞ simultaneously probes anticorrela-
tion in all bases at once, while a measurement of jHVi
determines only the degree of correlation in �z � �z but
provides no information about correlation in �y � �y or

�x � �x.
As a figure of merit to gauge the accuracy of an estima-

tion technique, we use the infidelity, which characterizes
the distance between two density matrices � and �. The
infidelity is defined as 1� F, where F is the fidelity [6]:

F ¼ ðTr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

p
�

ffiffiffiffi
�

pq
Þ2: (1)

While there are other figures of merit that one could adopt,
the fidelity has some appealing operational and analytic
properties that make it well-suited to the task. A more
detailed discussion of different figures of merit can be
found in Ref. [5].

By this measure, SSQST will generally produce better
estimates of separable states than of entangled states. This
can be observed in the Monte Carlo generated data in
Fig. 1(a), where the infidelity estimate is plotted as a histo-
gram over randomly selected maximally entangled and
separable states. The states were selected randomly over
the Haar measure induced by local unitary transformations
on the states [7], and the estimate was obtained by perform-
ing maximum-likelihood fitting on a simulated data set

with on average 18 000 copies of the state. On average,
the infidelity is significantly lower for separable states than
for maximally entangled states. The median values of the
infidelity for separable and maximally entangled states are
0:0054� 0:0001 and 0:0091� 0:0002, respectively.
If the class of measurement bases used in tomography is

augmented to include entangled bases, then this limitation
of SSQST can be overcome. Indeed, it is then possible to
achieve optimal projective quantum state tomography, that
is to say, quantum state tomography with no informational
redundancy. This can be achieved by taking advantage of
mutually unbiased bases.
Mutually unbiased bases (MUBs), first introduced in the

context of quantum state estimation byWootters and Fields
[8], have the property that all inner products between
projectors of different bases labeled � and � are equal to
1=D, where D is the Hilbert space dimension.
The minimal number of MUBs needed for informational

completeness is Dþ 1 since each basis provides D� 1
independent parameters plus a normalization, and ðD�
1ÞðDþ 1Þ ¼ D2 � 1 is the number of free parameters in
the density matrix. As it turns out,Dþ 1MUBs are always
informationally complete when they exist, andDþ 1 is the
maximum number of MUBs that can exist. For qubits
D ¼ 2N , and so the 2N � 1MUBs bases required for com-
plete tomography are considerably fewer than the 3N Pauli
bases used in conventional separable tomography. This can
result in a considerable reduction in experiment time if
significant resources are required to change measurement

FIG. 1 (color online). (a) Histogram of infidelity for 3000 randomly selected entangled states and 3000 separable states for which
SSQST was simulated. The Monte Carlo simulation used 18 000 total copies for each random state. (b) Comparison of experimental
MUB tomography and SSQST for the maximally mixed state. The average value of the ratio of infidelity using the SSQST-estimated
density matrix to that using MUB tomography was 1:49� 0:05. (c) Comparison of experimental MUB tomography and SSQST for the
state ð1= ffiffiffi

2
p ÞðjHHi þ jVViÞ. The average ratio of infidelity for the two methods was 1:84� 0:06. (d) Comparison of experimental

MUB tomography and SSQST for jHVi. The infidelity ratio for the two tomography methods was 1:09� 0:4. In (b)–(d) the solid line
represents a fit to the SSQST data and the dotted line to the MUB QST data. The apparent crossing of the MUBs and SSQST lines in
(d) is due to numerical errors at high N.
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bases. There is strong evidence that MUBs exist if and only
if the Hilbert space dimension is a power of a prime [9].

The uniform Hilbert-Schmidt overlap can be thought of
as expressing a complete lack of redundancy among mea-
surements. After measuring the projections in one basis,
the probability distribution of possible outcomes in the
next basis is uniform. In other words, nothing is known
about the outcomes of future measurements from previous
ones. More formally, it has been shown that MUBs allow
the maximum reduction in the Shannon entropy per mea-
surement [8] averaged over all states.

This advantage of MUBs is almost universally, although
unconsciously, applied in state estimation of one-qubit
systems. For these systems, mutually unbiased bases con-
sisting of the eigenstates of the �x, �y, and �z operators

have been the standard choice for tomographic measure-
ments since the very first studies in polarimetry [10].

For systems of qubits, MUBs can be constructed as
mutual eigenstates of Pauli operators following the ap-
proach of Ref. [11]. The particular set used in this work
is shown in the right column of Table I. Three of the two-
qubit MUBs are separable, and two of them are maximally
entangled, making them amenable to standard linear-optics
techniques for projective measurements [12].

To study the advantage of MUBs for state estimation, we
repeated the measurements required for tomography over
3000 0.2-second intervals for each basis for both SSQST
and MUB tomography. During each interval an average of
28 photon pairs per basis were detected. We added together
randomly selected data sets from among these trials to
obtain different numbers Ntot of total counts summed
over all bases. At total numbers above approximately
105, calculation of the infidelity was limited by computa-
tional errors, and the infidelity failed to continue its mono-
tonic decrease. The plots in Fig. 1 were truncated at a point
before this limit. At each value of Ntot we performed
maximum-likelihood fitting to find the density matrix
most likely to have generated the data set and used the
infidelity measure to compare it to the density matrix fit of
the entire data set containing all counts. This process was
repeated 30 times per point, and the infidelity was averaged
to produce the plots in Fig. 1. The error bars represent the
measured standard deviation over the 30 trials.

The experimental apparatus used to perform state to-
mography both in the mutually unbiased bases and in the
standard separable bases is shown in Fig. 2. We generate
our two-photon states by spontaneous parametric down-
conversion in two �-barium borate (�-BBO) crystals cut
for type-I phase matching at a 3� opening angle [13]. The
source could produce states with a degree of entanglement
controlled by the pump polarization. The crystals were
pumped by a 405-nm diode laser, generating broadband
spontaneous parametric down-conversion centered at
810 nm. The polarizations of the two down-converted
photons was controlled by liquid crystal wave plates
(LCWPs) and half wave plates (HWPs). Because of the

multimodal collection system and the 0.5 nm bandwidth of
our pump laser, the purity of maximally entangled states
generated with the system was 0.9. By applying random
phase shifts with the LCWPs, mixed states could also be
generated [14] with fidelity>0:98. Both maximally entan-
gling and separable measurements are required for MUB
tomography. For the maximally entangling measurements,
a polarization rotation followed by two-photon interfer-
ence on a 50–50 beam splitter [15] was used.
The visibility of the two-photon interference was mea-

sured to be 93%. Simulations demonstrated that this im-
perfect visibility increased infidelity for a given number of
counts by between zero and 6%, depending on the state.
This imperfect visibility was taken into account in con-
structing the operator basis used in the maximum-
likelihood fitting algorithm. Instead of consisting of pro-
jectors onto pure states, the entangling measurements were
modeled as rank-2 operators equal to a weighted sum of a
projector onto jcþi and a projector onto jc�i. This
change did not affect the informational completeness of
the whole set of measurements but meant that a greater
number of counts needed to be obtained to correctly esti-
mate the expectation values of operators that depended on
these partially mixed projectors.
The beam splitter was mounted on a scissor jack and so

could be removed from the optical path without changing
the alignment, allowing us to implement separable mea-
surements as well as entangling measurements. Standard
polarization analysis enabled us to collect measurements
from the three separable MUBs and the nine separable
bases in SSQST.
Figure 1 shows plots of the infidelity (1� F) against

total number of counts Ntot for representative mixed, en-
tangled, and separable states. Based on previous analyses
[5], we expect the infidelity to drop as 1=

ffiffiffiffiffiffiffiffi
Ntot

p
for pure

FIG. 2 (color online). Experimental apparatus for MUB state
tomography. A nonlinear crystal (BBO) is pumped to produce
pairs of spontaneous parametric down-conversion photons.
LCWPs and HWPs rotate the state. Entangling measurements
are made by using two-photon interference at a removable non-
polarizing beam splitter (BS), and these measurements can be
rotated with HWPs, quarter wave plates (QWPs) and LCWPs to
generate all necessary projections. For separable measurements
the BS is removed and ordinary polarization analysis performed
at the detectors using the polarizing beam splitters (PBS), HWPs,
and QWPs.
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states and 1=Ntot for maximally mixed states. The state
jHVi and the maximally mixed state agree with this pre-

diction, but the infidelity of the entangled state ð1= ffiffiffi
2

p Þ�
ðjHHi þ jVViÞ drops more rapidly than predicted. This
effect is not currently understood, but we are investigating
it in follow-up experiments. The apparent crossing of the
MUBs and SSQST infidelity lines is due to numerical
errors for larger N.

Measurements on the mixed state yield a uniform proba-
bility distribution in all bases. For this state the ratio of
SSQST infidelity to MUB QST infidelity was 1:49� 0:05,
independent of Ntot. This result is reasonably consistent
with the infidelity estimated analytically from the covari-
ance matrix calculated from a linear inversion formula [1].
This analysis predicted a value of 1.38 but required the
approximation that the inversion was linear instead of
maximum-likelihood and that the error in the total counts
for each basis was uncorrelated to the individual counts for
each measurement in the basis. The smaller number of
bases in MUB tomography allows 9=5more measurements
to be made in each for the same number of total copies of
the state. Although SSQST provides a more complete
covering of the Hilbert space by including a greater num-
ber of bases, this does not make up for the greater number
of copies that MUB tomography can distribute to each of
its minimal number of bases.

It might also be expected that MUBs offer a better
estimate of entangled states. When we measured the state

ð1= ffiffiffi
2

p ÞðjHHi þ jVViÞ with the two techniques, we found
that the ratio of infidelity observed with SSQST to that with
MUB tomography was 1:84� 0:06. In this case, in addi-
tion to the better statistics obtained by having fewer bases,
the MUB tomography is able to estimate the strength of
correlations in different bases without having to collect
redundant information about the single-qubit polarization.

The advantage of MUB tomography as compared to
SSQST approaches insignificance when we look at sepa-
rable states. For jHViwe observe that the ratio of infidelity
for SSQST as compared to MUB QST is 1:09� 0:05.
However, even the fact that MUBs are no worse at estimat-
ing separable states is indicative of their superior capabil-
ities since this is the class of pure states that the standard
separable tomography estimates best.

We have demonstrated optimal projective quantum state
tomography on a number of quantum states and compared
it with standard separable-state tomography. While high-
quality entangling measurements remain difficult to make
in quantum optical systems, for systems where strong
entangling interactions are available, such as trapped ion

quantum computers, MUB tomography may already be a
good choice to reduce the complexity and the duration of
quantum state estimation [16]. MUBs are the natural
choice of tomographic bases because of their ability to
eliminate redundant measurements and to provide the
best estimate of a quantum state from measurements on a
discrete number of copies. Because they are based on
projection-valued measurements, they can be implemented
relatively easily in multiparticle systems.
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