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Anyon models can be symmetric under some permutations of their topological charges. One can then

conceive topological defects that, under monodromy, transform anyons according to a symmetry. We

study the realization of such defects in the toric code model, showing that a process where defects are

braided and fused has the same outcome as if they were Ising anyons. These ideas can also be applied in

the context of topological codes.
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Particle statistics are particularly rich in two spatial
dimensions, where beyond the usual fermions and bosons
there exist more generally anyons (see [1] for a com-
pilation of the basic references). Anyonic statistics are
complex enough to give rise to the notion of topological
quantum computation (TQC) [2–4], where computa-
tions are carried out by braiding and fusing anyons; see
Figs. 1(a)–1(c). The nonlocal encoding of quantum infor-
mation on fusion channels and the topological nature of
braiding make TQC naturally robust against local pertur-
bations, providing a complement to fault-tolerant quantum
computation [5,6].

In condensed matter, anyons emerge as excitations in
systems that exhibit topological order [7]. A possible way
to obtain these exotic phases is by engineering suitable
Hamiltonians on lattice spin systems [2,8–11]. Indeed,
implementations on optical lattices have been proposed
[12]. Unfortunately, the anyon models that appear in sim-
ple models are not computationally powerful. In this Letter
we address a strategy to recover computationally interest-
ing anyonlike behavior from systems with very simple
anyonic statistics.

Our starting point is the symmetries that anyons may
exhibit. Anyon models have three main ingredients: (i) a
set of labels that identify the superselection sectors or
topological charges, (ii) fusion or splitting rules that dictate
the charges of composite systems, and (iii) braiding rules
that dictate the effect of particle exchanges. A symmetry is
a label permutation that leaves braiding and fusion rules
unchanged; for a recent survey, see [13]. Given a symmetry
s, we can imagine cutting the system along an open curve,
as in Fig. 1(d), and then gluing it again ‘‘up to s.’’ Ideally
the location of the cut itself is unphysical, only its end
points have a measurable effect. In particular, transporting
an anyon around one end of the line changes the charge of
the anyon according to the action of s. Our aim is to
explore to which extent these topological defects, that we
call twists for short, can be ‘‘treated as anyons’’ and used in
TQC. Twists are being independently studied by Kong and
Kitaev [14]. An interesting precedent is the Alice strings
appearing in some gauge models [15], which can cause
charge conjugation under monodromy, whereas the twists

that we will discuss here exchange electric and magnetic
charges.
Rather than trying a general, abstract approach, we will

focus on a well-known spin model, the toric code model,
and address twists constructively. In this model anyons
have no computational power, but we will show that twists
behave as Ising anyons [16], which are computationally
interesting. In fact, they do not directly allow universal
computation, but there exist strategies to overcome this
difficulty [17–19]. In [20], Wootton et al. also try to mimic
the non-Abelian behavior in an Abelian system, using an
entirely different approach and philosophy.
We remark that, although the discussion will mainly be

in terms of topological order, it has direct application in the
closely related context of topological codes [21–24].
Anyon models.—Anyon models are mathematically

characterized by modular tensor categories, but we will
not need such generalities (for an introduction see, for
example, [25]). Instead, we will illustrate the content of
anyon models with an example: Ising anyons.
The first element of an anyon model is a set of labels that

identifies the superselection sectors or topological charges
of the model. For Ising anyons there are three: 1, �, and c .
Any given anyon carries such a charge, which cannot be
changed locally. We can also attach a charge to a set of
anyons or a to a given region. A region without anyons has
trivial charge 1.
Next we need a set of fusion rules that specify the

possible values of the total charge in a composite system.
In terms of anyon processes, fusion rules specify the pos-

FIG. 1. Anyon processes: time flows upwards. (a),(b) Two
topologically distinct ways to exchange anyons. (c) A fusion
of two anyons. (d) Two twists (crosses) connected by a line
(dotted) across which e charges become m charges.
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sible outcomes of the fusion of two anyons; see Fig. 1(c).
For Ising anyons fusion rules take the form

���¼ 1þ c ; �� c ¼�; c � c ¼ 1: (1)

That is, a pair of�’s may fuse into the vacuum or produce a
c , a � and a c always fuse into �, and two c ’s into the
vacuum. Fusion rules are commutative and 1� a ¼ a.

When two � anyons are far apart, their total charge,
which might be 1 or c , becomes a nonlocal degree of
freedom. This is indeed an example of a topologically
protected qubit, since there are two possible global states.
We can measure this qubit in the charge basis by fusing the
two �’s and checking the output. In general, for any set of
anyons with given charges there is a fusion space that
describes the nonlocal degrees of freedom related to fusion
outcomes. For example, for 2n �’s with indefinite total
charge the fusion space has dimension 2n.

Braiding operations as those in Figs. 1(a) and 1(b) act on
the fusion space in a topologically protected way. This
action is in general described by braiding rules, but in
the case of Ising anyons it is possible to characterize
braiding with Majorana operators. In particular, for 2n
�’s we need 2n Majorana operators ci. These are self-
adjoint operators that satisfy cjck þ ckcj ¼ 2�jk and act

onC2n , as needed. The total charge of the jth and (jþ 1)th
anyon is given by the operator �icjcjþ1, the eigenvalues

þ1 and �1 corresponding to the total charge 1 and c ,
respectively. Under the braiding of Fig. 1(a) the operators
evolve as follows:

cj ! cjþ1; cjþ1 ! �cj; ck ! ck; (2)

where j � k � jþ 1. This describes braiding up to pro-
cess dependent phases that we will not need.

The quantum gates obtained from the braiding of �
anyons are not universal. Indeed, they are Clifford gates.
Yet, they can be complemented with physically plausible,
topologically unprotected, noisy operations to get univer-
sal quantum computation [17].

Symmetries.—We will now illustrate the notion of a
symmetry in an anyon model with the model technically
known as the quantum double of the group Z2. It has four
charges: 1, e, m, and �. The fusion rules are

e�m ¼ �; e� � ¼ m; m� � ¼ e;

e� e ¼ m�m ¼ �� � ¼ 1:
(3)

These are Abelian fusion rules: the result of a fusion al-
ways has a definite outcome. Thus, the fusion space is
trivial and the effect of braiding a charge a with a charge
b as in Fig. 1(a) can be captured in a phase Rab. The Rab

phases have in general no measurable effect, but we can
build the following invariants, in principle measurable:

Ree ¼ Rmm ¼ 1; R�� ¼ �1;

RemRme ¼ Re�R�e ¼ Rm�R�m ¼ �1:
(4)

Thus e and m charges are bosons and � charges fermions.

A remarkable property of the rules (3) and (4) is their
invariance under the exchange of e and m. Indeed, there
exists a self-equivalence of the corresponding modular
tensor category that exchanges e and m [13]. A construc-
tion like the one in Fig. 1(d), where there is a line in the
system across which e and m charges are exchanged, is
then conceivable. The rest of this Letter is devoted to
explicitly realize this in a spin model and explore its
consequences.
Toric code model.—This is a spin-1=2 Hamiltonian

model, with spins forming a square lattice. The interactions
are four body, with each plaquette in the lattice contribut-
ing a Pauli product term to the Hamiltonian:

H :¼ �X

k

Ak; Ak :¼ �x
k�

z
kþi�

x
kþiþj�

z
kþj: (5)

Here k ¼ ði; jÞ indexes the spins and i :¼ ð1; 0Þ, j :¼
ð0; 1Þ. We have chosen a uniform coupling J ¼ 1; taking
instead a different nonzero coupling for each term would
not change the physics that interest us. The Hamiltonian
(5) might be hard to engineer, but it can be obtained
effectively from a two-body spin-1=2 model [8] for which
there exist experimental proposals [12]. The toric code
model was originally introduced by Kitaev [2], but the
more symmetric form (5) is due to Wen [9]. This symmetry
was further studied in [26].
The ground subspace of (5) is described by the condi-

tions Ak ¼ 1. Excitations are localized and gapped: a pla-
quette k is excited if Ak ¼ �1, in which case we say that it
holds a quasiparticle. These quasiparticles are anyons,
described by the quantum double of Z2 (3) and (4). To
label quasiparticles with their topological charge, we first
have to label plaquettes with two ‘‘colors’’ as in a chess-
board lattice; see Fig. 2(a). Then we can attach a charge e
(charge m) to quasiparticles living at dark (light) pla-
quettes. Notice that the exchange of e and m labels is
trivially a symmetry at the Hamiltonian level, since the
choice of dark or light plaquettes is entirely arbitrary.
String operators.—Consider the action of �x

k. It flips the

state of the plaquettes k-i and k-j, either hopping a quasi-
particle or creating or annihilating a pair of quasiparticles.

FIG. 2. A square lattice with spins living at vertices.
(a) Plaquette operators are products of four Pauli operators.
String operators are products of Pauli operators on their edges.
(b) A dislocation in the geometry of the Hamiltonian produced
by shifting plaquettes. In the pentagon one can introduce the
indicated plaquette operator, which commutes with the rest.
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We can thus visualize �x
k as a segment t connecting the

centers of these two plaquettes and write St :¼ �x
k.

Similarly, we relate the operator St0 :¼ �z
k to a segment t0

connecting the centers of k and k-i-j. Next we consider a
string �, an ordered collection of segments ðtiÞr1, and build
the string operator S� :¼ Str � � �St1 . Given an open string

�, with two different plaquettes k and k0 as end points, S�
flips the eigenvalues of Ak and Ak0 . Thus, S� represents a

process where an anyon is moved along the string, plus
suitable creation or annihilation events on the end points.
We can distinguish between dark and light strings, depend-
ing on whether they connect light or dark plaquettes; dark
(light) strings transport e anyons (m anyons). String opera-
tors have two important properties: (i) a dark string �D and
a light string �L anticommute when they cross an odd
number of times, and (ii) if VR is the subspace of states
with trivial charge in a given region R and two strings �
and �0 enclose R, then S�jVR

¼ S�0 jVR
. That is, strings

operators can be freely deformed as long as they do not
go over an excitation.

The algebra of string operators alone is enough to com-
pute the anyonic nature of the model [2,27]. Here we are
more interested in the fact that among string operators
there are constants of motion related to the topological
charge of given regions. Notice that closed string operators
commute with all plaquette operators; they represent vac-
uum to vacuum processes. Consider a closed dark string
�D and a closed light string �L enclosing a given region.
Then S�D ¼ 1 if the total charge is 1 or e, S�D ¼ �1

otherwise. Similarly, S�L ¼ 1 if the total charge in the

region is 1 or m, S�D ¼ �1 otherwise. Together, S�D and

S�L distinguish the four charges.

Twists.—To construct a line L across which e and m are
exchanged, as in Fig. 1(c), we have to introduce disloca-
tions in the lattice: along L, plaquettes are shifted so that
the coloring does not match, as in Fig. 2(b). The geomet-
rical change implies a change in the Hamiltonian, and we
indicate in the figure the new plaquette operators. At the
ends of the line we find pentagonal plaquettes. We can
either add a pentagonal plaquette operator, as indicated in
the figure, or allow a localized gapless mode. Turning
points of L can be dealt with similarly.

The topologically interesting behavior occurs at the ends
of L, the twists. A string that winds once around a twist
cannot close, as it changes from dark to light or vice versa.
That is, e charges becomem charges if they are transported
around a twist. Because of these global properties, it is
clear that twists have a topological nature, in the sense that
isolated twists cannot be created or destroyed locally. In
particular, the parity of the number of twists in a region
cannot be changed without altering the geometry in the
boundary of the region.

With twists, the labeling of e and m charges becomes
inconsistent. But we can still fix a local labeling at a base
point and make it global via a fixed set of paths. Also, from
a topological perspective only the location of the twists

matters. In particular, if plaquettes are shifted along a circle
enclosing a region without twists, the topological proper-
ties of the system are unchanged.
The possibility of considering dislocated lattices for (5)

was already pointed out by Kitaev in [8], where he argued
the appearance of topological degrees of freedom. We will
see not only that this is true, but also that twists have
interesting fusion and braiding rules.
Generalized charges.—Twists act as sources and sinks

for � fermions. Indeed, an � fermion can split in a pair of e
and m charges, and if one of them winds around a twist
they can annihilate; see Fig. 3(a). This suggests that we
cannot distinguish four topological charges in a region with
a twist, as 1 and �, and also e and m, become identified.
String operators make this more precise. In a region with
an odd number of twists, we cannot define the two enclos-
ing strings needed to distinguish the four charges. Instead,
there is a single string � that winds twice around the
region; see Fig. 3(b). Since � self-crosses, the ordering
of its segments is relevant and we choose one of two
topologically distinct orientations. The eigenvalues of S�
distinguish two new topological charges: �þ for S� ¼ i

and �� for S� ¼ �i. The pentagonal plaquette operator of

Fig. 2(b) introduces an energy difference between them.
We have six generalized topological charges in the

model: 1, e, m, �, �þ, and ��. These are not the charges
of an anyon model, because anyonic charges are not modi-
fied through braiding. Yet, they do have well-defined fu-
sion rules that can be recovered using string operators:

�� � �� ¼ 1þ �; �� � �� ¼ eþm;

�� � � ¼ ��; �� � e ¼ �� �m ¼ ��:
(6)

To exemplify the computation of these rules, consider the
fusion �þ � �þ. Let �1, �2 be the strings that wind twice
around each of the twists, as in Fig. 3(c), and let �L, �D be
two nonequivalent strings that enclose the two twists.

FIG. 3. Several string operators (solid lines) and twists
(crosses), in a top view of the system. The ordering of segments
in the string dictates which is drawn over which. Dotted lines are
fermion string operators, two parallel string operators of differ-
ent type. (a) A process that creates or annihilates an �. (b) Two
inequivalent closed string operators winding around a given
twist. We choose the one to the left to define �þ and ��.
(c) Three equivalent string operators. The first equation uses
property (ii) of string operators, the second uses (i) in addition to
(ii). (d) The strings �1; �2; �3; . . . that define Majorana operators.
The stars mark their end points. (e) The effect on �j strings of
braiding adjacent twists as in Fig. 1(a).
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Then, as demonstrated in Fig. 3(c), in the absence of other
excitations S�DS�L ¼ �S�1S�2 ¼ 1, which implies that the

total charge can only be 1 or �. Since we can switch the
charge by moving an external � ‘‘into’’ any of the two
twists, the rule follows.

Ising anyons.—In view of (6), it is tempting to consider
the subset of charges f1; �þ; �g: it is closed under fusion—
with rules (1) via �þ ! �, � ! c—and a charge � re-
mains the same after being transported around �þ. Could
this subset of charges be regarded as an anyon model? Not
really: we cannot attach an invariant meaning to R��þR�þ�,

because we cannot directly compare [27] the path of an �
that surrounds a�þ and one that surrounds a trivial charge:
the geometry is different. Nevertheless, as we will show
now, the braiding and fusion of �þ twists reproduces that
of � Ising anyons.

If braiding twists is to make sense, we need to move
them, for example, by adiabatically transforming the ‘‘ge-
ometry’’ of the Hamiltonian. In a different context, that of
toric codes [2,21], there is no Hamiltonian but just an
encoding subspace that corresponds to the ground subspace
of (5). There we can also change the geometry through
code deformations [21,28,29]. Although the geometry of
the Hamiltonian or code depends necessarily to a certain
extent on the braiding history, at a topological level we can
ignore this as long as different processes are not compared.
Then, whatever the setting, with or without a Hamiltonian,
we can analyze the effect of braiding following the evolu-
tion of closed string operators, which are topologically pro-
tected. We will focus on the braiding of �þ twists, but the
treatment of �þ and �� twists together is very similar.

The key to understand braiding is to introduce strings �j

such that the operators cj :¼ S�j realize the Majorana

operators in (2). A suitable choice for the �j is given in
Fig. 3(d). All these strings have the same end points, so that
any product of an even number of cj’s corresponds to a

closed string configuration and gives a constant of motion.
This is true, in particular, for the operators Cj :¼�icjcjþ1,

which give the total charge of the j th and (jþ 1)th twists.
Namely, Cj ¼ 1 if the charge is 1 and Cj ¼ �1 if it is �,

exactly as desired. Moreover, under braiding the evolution
of the constants of motion is dictated by (2), as can be
computed graphically starting from Fig. 3(e). In conclu-
sion, �þ twists exactly mimic Ising anyons under braiding
and fusion, that is, as long as process dependent phases are
not involved, which fails, for example, in an interference
experiment.

Discussion.—Beyond the particular example addressed
here, it would be interesting to explore twists in general
anyon models. For example, can twist braiding and fusion
be computationally universal in a nonuniversal anyon
model? Also, we have adopted an approach where twists
are directly engineered, but they could appear randomly in
systems where topological order emerges naturally. In the
context of topological codes, the ideas presented here are
tools to design and manipulate codes. For example, they

allow one to get planar versions of the topological sub-
system codes introduced in [24].
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