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Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the

surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form

bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the

cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the

reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach,

we show that the cell shape can be regarded as a steady state of a growing network under the influence of

turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common

spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are

discussed within the context of our model.
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The bacterial cell wall is a living structure that is re-
sponsible for maintaining the observed cell shape. The
biochemical mechanisms of cell wall synthesis and growth
have been extensively studied [1,2]. However, basic ques-
tions still remain: How do rodlike bacteria maintain a
specific radius but grow in the axial direction? What con-
trols the apparent size of bacterial cells? What are the roles
of bacterial cytoskeletal proteins in determining the cell
shape and size? To answer these questions, a number of
ideas have been proposed. Koch, based on the work of
Thompson [3], suggested that bacterial shapes are deter-
mined by the surface stress in the cell wall [4]. A different
model [5] based on the growth mechanism of the plant cell
argued that the growing bacterial cell wall is similar to
plastic deformation, and bacteria grow only when a critical
stress is reached. In these qualitative models, the relation-
ship among growth, shape, and size of bacteria is not
apparent, and the results are specific to certain cell types.
In this paper, we develop a general mechanochemical
model of the growing bacterial cell wall, which shows
explicitly how growth and shape are coupled together to
determine the growth velocity and the bacteria size.

The bacterial cell wall is a network of connected glycan
strands and peptide chains. The glycan strands are made
from a repeating subunit of N-acetylglucosamine (NAG)
and N-acetylmuramic acid (NAM). Attached to the
N-acetylmuramic acid is a peptide chain of a few amino
acids. These peptide chains are cross-linked to peptide
chains from other strands to form the meshlike peptido-
glycan network (PG) layer (Fig. 1) [2]. NAG-NAM sub-
units are synthesized at the cytoplasmic side of the inner
membrane and translocated to the periplasm. The exported
subunits store chemical energy derived from their synthesis
in the cytoplasm. This stored energy is released during the
addition of new subunits to the existing network, forming
new disaccharide and peptide bonds [6]. The PG layer is a

constantly evolving network; new subunits are inserted in
the existing cell wall, but the existing bonds are also
broken by hydrolases and subunits are released from the
existing network. The loss of PG subunits can be viewed as
the inverse of cell wall growth. For Gram-positive bacteria
such as Bacillus subtilis, the released material can be
detected in the surrounding medium [7]. In Gram-negative
bacteria such Escherichia coli, the released material is
probably efficiently recycled [8].
Although the PG synthesis and turnover processes are

complex, at the simplest level, they can be viewed as a
reversible assembly reaction. Enzymes catalyze the assem-
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FIG. 1 (color online). The bacterial cell wall is a growing
network of PG strands. PG subunits are inserted at random
points along the cell by enzymes. The network is also under
mechanical stress from turgor pressure and cytoskeletal influen-
ces. The cartoon shows the reversible assembly reaction where
the cell wall area increases from A to Aþ dA. The net energy
change of the reaction has a chemical component and a me-
chanical component [Eq. (1)]. The dotted line is the reaction
energy without mechanical contributions, and the solid line
includes the mechanical energy.
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bly, but the final PG synthesis steps do not require input of
other energy such as ATP. Typically, the product is favored,
and the chemical energy change is negative as more PG
strands are added to the wall (Fig. 1). However, because the
cell wall is under constant tension from turgor pressure, the
reaction must be influenced by the mechanical stress in the
network. To develop a theoretical description, let us exam-
ine the process where the cell wall area increases slightly,
or A ! Aþ dA (Fig. 1). The chemical energy released
during this growth process is �dA, where � is the released
energy per unit area in the undeformed configuration. At
the same time, the originally stress-free PG subunits are
stretched and inserted into the existing PG network.
Therefore, the mechanical energy of the PG subunits in-
creases. The total change in energy is then

dG ¼ GðAþ dAÞ �GðAÞ ¼ dU� �dA; (1)

where dU is the change in the strain energy of the network.
It should be noted that the insertion of new PG subunits
may also change the stress state of the old network. dU
depends on the shape and size of the cell wall. This
indicates that there could be a size and shape of the cell
where the increased strain energy exactly balances the
decreased chemical energy and dG ¼ 0. When this con-
figuration is reached, assembly and disassembly reactions
exactly balance and the cell wall stops growing.

To compute the mechanical energy, we can specify the
undeformed midplane of the cell wall by a 3D surface:
�rð�1; �2Þ, where a curvilinear coordinate system ð�1; �2Þ is
used. The tangential vectors of the surface are given by
�m� ¼ @�r

@��
, from which a covariant basis ð �m1; �m2; �m3Þ and

a contravariant basis ð �m1; �m2; �m3Þ can be constructed in
the standard way [9]. In this paper, we use Greek letters to
indicate index 1 or 2 and use English letters to indicate
index 1, 2, or 3. The metric tensors are defined by �g�� ¼
�m� � �m� and �g�� ¼ �m� � �m�. The deformed shape of the

cell wall can be described by another three-dimensional
surface rð�1; �2Þ, which is the surface after accounting for
turgor pressure and other forces. In the same fashion, we
introduce two sets of basis ðm1;m2;m3Þ and ðm1;m2;m3Þ
and the metric tensor g�� for the deformed surface.

Since the thickness of the cell wall, h, is much less than
the overall dimensions of the cell, we can use the theory of
thin shells to estimate the mechanical energy. The trans-
verse shear stress resultants and the internal moments can
be neglected. In this case, the stress resultants are symmet-
ric and fully decoupled from the internal moments. The
mechanical load on the wall is the turgor pressure P. Here
we assume that the growth process is slow and the cell wall
is always in mechanical equilibrium. The stress balance
equations are

@T��

@��

þ T����
�� þ T����

�� ¼ 0; (2)

T����� ¼ P; (3)

where T�� is the stress resultant tensor, ��
�� are the

Christoffel symbols of the second kind, and ��� is the

curvature tensor [9]. The solutions of these equations allow
us to compute the total cell wall energy

G ¼
Z �

h

2
D���������� þ h3

24
D������������

�

� dA�
Z

�dA; (4)

where the first term is the mechanical stretching and bend-
ing energies of the cell wall. The last term is the chemical
energy. Here we define an elasticity tensor following
Bower [9]: D���� ¼ 	 �g�� �g�� þ�ð �g�� �g�� þ �g�� �g��Þ,
where 	 ¼ vE

1�v2 and � ¼ E
2ð1þvÞ , with E and 
 the

Young’s modulus and Poisson ratio of the PG layer, re-
spectively. The midplane Lagrange strain tensor is defined
by � ¼ ��� �m� � �m� ¼ 1

2 ðg�� � �g��Þ �m� � �m�.

The rate of wall growth should be proportional to the net
flux of adding more materials to the cell wall. We postulate
that this flux is proportional to the magnitude of the total
energy change. For a small added area dA, the change in
energy is dG. Therefore, we define the growth velocity as

@�r

@t
¼ MFð�rÞ; (5)

where �g is the determinant of �g�� and M is a phenome-

nological constant that is determined by the kinetics of the
growth mechanism. The driving force F for growth is the
energy decrease in the cell wall per unit length of growth:Z

Fð�rÞ � ��rd�1�2 ¼ ��G: (6)

It is clear that growth stops when F ¼ ��G=��r ¼ 0.
If the cell wall grows in a self-similar manner, i.e., the

shape of the bacterial cell wall is determined by several
parameters ai, then the change in the total energy is dG ¼P

i � Fidai. Fi is the driving force corresponding to the
parameter ai:

Fi ¼ � @G

@ai
: (7)

The growth velocities can be described by

dai
dt

¼ MFi: (8)

For growing spherical cells such as Cocci, the solutions
of these equations are particularly simple. In this case, we
have only one free parameter, the radius of the cell. If we
assume small deformations, the total energy of the cell wall
and the growth velocity are, respectively,

G ¼ 4�

�
P2R4

8ð	þ�Þh� �R2

�
(9)

and
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_R ¼ 4�M

�
P2R3

2ð	þ�Þhþ 2�R

�
; (10)

where R is the radius of the cell. The total energy has a
minimum at which the increased strain energy is balanced
by the released chemical energy as shown in Fig. 2(a). The
radius corresponding to this minimum defines a steady
state size Rs for the cell:

Rs ¼ 1

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð	þ�Þh�

q
: (11)

This radius corresponds to the observed size of the cell
and is also the stable fixed point of Eq. (10) as shown in
Fig. 2(b). This implies that if any of the parameters are
changed suddenly, a new steady state radius will develop.
Equation (11) neglects cell wall bending energy since the
bending energy is relatively small when compared to the
stretching energy at this length scale. If we consider bend-
ing, Eqs. (9)–(11) would be modified slightly, but all con-
clusions are similar.

For rodlike cells such as E. coli the total energy is

G ¼ 2�L

�
P2R3ð	þ 10�Þ
32f�ð	þ�Þ � �R

�
; (12)

where R is the bacterial radius and L is the length of the
cylinder region. The cell poles are rigid and inert [10].
Therefore, we neglect the poles in this calculation. The
growth equations are

_R ¼ 2�ML

�
� 3P2R2ð	þ 10�Þ

32h�ð	þ�Þ þ �

�
; (13)

_L ¼ 2�M

�
�P2R3ð	þ 10�Þ

32h�ð	þ�Þ þ �R

�
: (14)

The time evolutions of the radius and length of rodlike
bacteria with varying initial radius are shown in Fig. 3. The
phenomenological constant M is estimated to be
0:01 m2 J�1 s�1 since under optimal conditions E. coli
doubles its length and divides every 20 minutes. Results
show that there is always a steady radius

Rs ¼ 1

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32h�ð	þ�Þ�
3ð	þ 10�Þ

s
; (15)

and bacteria grows at a constant speed in the longitudinal
direction once this steady radius is reached. To explain
exponential elongation [11] of bacteria, the left-hand side
of Eqs. (13) and (14) is replaced by strain velocities _R=R
and _L=L, respectively. The steady radius remains un-
changed, but the length increases exponentially. Note that
the phenomenological constant M should depend on the
spatial and temporal distribution of penicillin-binding pro-
teins. For example, during division, penicillin-binding pro-
teins are concentrated near the midcell. Together, these
results show that directionality of PG insertion is deter-
mined by the local strain energy, which is in turn deter-
mined by the local geometry. Therefore, growth, shape,
and size of bacteria are coupled together through the strain
energy.
The growth equations predict that the cell should elon-

gate indefinitely if nutrients are optimal and division is
inhibited. This is in accord with experimental observations
[12]. Another interpretation is that division is simply a way
to separate a continuously elongating cell. Furthermore,
the growth velocity is correlated to the steady radius
through � as shown in Fig. 4(a). This may explain why
the bacteria radius is larger under high growth rate con-
ditions [13] because � is directly proportional to the den-
sity of chemical bonds in the PG layer and the availability
of enzymes. � is one of the factors that will effectively
control the radius and growth velocity of bacteria.
Equations (13) and (14) also suggest that the longitudinal
growth rate depends on the cell radius. If the cell radius is

artificially controlled, for a critical radius Rc ¼ Rs

ffiffiffi
3

p
, the

elongation rate approaches zero.
Typical values of parameters for Gram-negative bacteria

are P � 0:2–0:3 MPa, E � 20–70 MPa, and h �
3–10 nm [10]. We assume 
 ¼ 0:3. The bond energy per
unit area, �, has not been measured specifically for bac-
teria. But for typical C-O covalent bonds in the glycan

FIG. 2 (color online). (a) The free energy of a spherical
bacteria as a function of radius R. (b) The growth velocity of a
spherical bacteria vs bacteria radius. The parameters are P ¼
0:2 MPa, E ¼ 50 MPa, 
 ¼ 0:3, h ¼ 7 nm, � ¼ 0:05 Jm�2,
and M ¼ 0:01 m2 J�1 s�1.

FIG. 3 (color online). The time evolution of the radius and
length of rodlike bacteria with varying initial radius. The inset of
(b) is the growth velocity in the axial direction. The parameters
are P ¼ 0:2 MPa, E ¼ 50 MPa, 
 ¼ 0:3, h ¼ 7 nm, � ¼
0:05 Jm�2, and M ¼ 0:01m2 J�1 s�1. The cell lengths as func-
tions of time in (b) are almost indistinguishable. (b) can be
compared with experimental measurements in Ref. [20].
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backbone, the bond energy is approximately 360 kJ=mol.
Peptide bond energies are significantly lower. In each pore
of area 25 nm2, there are roughly 2 C-O glycan bonds and
1 peptide bond per layer of PG network, giving � �
0:05 n J �m�2, where n is the number of PG layers.
Usually, n ¼ 1–3 for Gram-negative bacteria. For Gram-
positive bacteria, the parameters are P � 1:5 MPa, E �
30 MPa, h ¼ 20–40 nm, and n ¼ 3–8 [10]. These parame-
ters predict that Rs is roughly 0:5 �m for both Gram-
negative and Gram-positive cells, in agreement with ob-
servations of most bacterial cells.

For crescent-shaped cells such as Caulobacter crecen-
tus, the growth equations are similar to that of rodlike
bacteria. In this case, the free parameters are the curvature
radius of the center line R0 and the radius of cross section
of the bacteria R. Under the assumption R0 � R, the
growth equations are identical to those of rodlike bacteria
except that L in Eqs. (13) and (14) is replaced by R0.
Similar to rod-shaped bacteria, the curvature radius R0

grows at a constant speed if there are no external or internal
constraints. This is consistent with the experimental obser-
vations that the curvature is relaxed after curved E. coli is
released from microchambers that constrained the growth
of the cell [14,15].

An important question is how naturally curved bacteria,
which are not influenced by external constraints, maintain
their curvature. A possible answer is that these bacteria are
restrained by intermediate filamentlike proteins inside the
cell [16,17]. Experiments have shown that C. crescentus
loses its helical shape and resembles a straight rod in the
absence of crescentin [15]. Several other cytoskeletal fila-
ments such as MreB and RodZ are also involved in chang-
ing the cell shape from spheroids to rods [16]. A potential
mechanism for MreB is that it can exert forces on the
lateral cell wall and oppose or enhance turgor pressure,
depending on its spontaneous curvature. This force is
likely small, �5% of turgor pressure [18], and in the

cylindrical geometry it does not affect the steady state
radius of Eq. (15) significantly. But if the cell is not in
the cylindrical geometry, the force MreB can influence the
shape of the cell [Fig. 4(b)]. In a similar manner, the
bacterial tubulin homologue FtsZ also influences cell shape
by exerting a small contractile force at the midcell, gen-
erating a division septum [19]. These cases will be dis-
cussed more completely by examining force generation
mechanisms of these cytoskeleton bundles and solving
Eq. (5) for arbitrary shapes.
The main concept we introduced in this paper is that the

competition between mechanical energy and chemical en-
ergy can determine the cell wall growth dynamics and lead
to size limits of bacterial cells. Using a simple elastic
model to describe the mechanical energy, we make pre-
dictions on the steady state geometry of regular bacteria. It
is important to recognize that the total energy in the form of
Eq. (1) is a simplified model. The molecular structure of
the cell wall is complex, and a more accurate constitutive
model should yield more quantitative results. It is also not
clear whether the steady shape of the cell is entirely
determined by energetics and not by kinetics of the growth
mechanism. Nevertheless, mechanics and chemistry must
be considered on an equal footing to understand the growth
and morphology of living systems.
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FIG. 4 (color online). (a) The growth velocity in axial direc-
tion for rodlike bacteriavs the steady radius Rs. Larger cells grow
faster, although the ðRs; �Þ ! 0 limit is unphysical and should
not be considered. The parameters are the same as Fig. 3.
(b) MreB (red line) can be modeled as an additional mechanical
influence on the cell wall. By solving Eq. (5), we observe that the
shape of the cell can slowly morph from a sphere to a rod, in
agreement with experimental observations.
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