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We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile

stress as a function of geometry and mode index m � 9. Reproducing all observed resonance frequencies

with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain

we successfully predict the observed mode-dependent damping with a single frequency-independent fit

parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying micro-

scopic mechanisms.
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The resonant motion of nanoelectromechanical systems
has received a lot of recent attention. Their large frequen-
cies, low damping, i.e., high mechanical quality factors,
and small masses make them equally important as sensors
[1–4] and for fundamental studies [3–9]. In either case, low
damping of the resonant motion is very desirable. Despite
significant experimental progress [10,11], a satisfactory
understanding of the microscopic causes of damping has
not yet been achieved. Here we present a systematic study
of the damping of doubly-clamped resonators fabricated
out of prestressed silicon nitride leading to high mechani-
cal quality factors [10]. Reproducing the observed mode
frequencies applying continuum mechanics, we are able to
quantitatively model their quality factors by assuming that
damping is caused by the local strain induced by the
resonator’s displacement. We thereby deduce that the
high quality factors of strained nanosystems can be attrib-
uted to the increase in stored elastic energy rather than a
decrease in energy loss. Considering various microscopic
mechanisms, we conclude that the observed damping is
most likely dominated by dissipation via localized defects
uniformly distributed along the resonator.

We study the oscillatory response of nanomechanical
beams fabricated from high stress silicon nitride (SiN). A
released doubly-clamped beam of such a material is there-
fore under high tensile stress, which leads to high mechani-
cal stability [12] and high mechanical quality factors [10].
Such resonators therefore have been widely used in recent
experiments [6,9]. Our sample material consists of a silicon
substrate covered with 400 nm thick silicon dioxide serv-
ing as sacrificial layer and a h ¼ 100 nm thick SiN device
layer. Using standard electron beam lithography and a
sequence of reactive ion etch and wet-etch steps, we fab-
ricate a series of resonators having lengths of 35=n �m,
n ¼ f1; . . . ; 7g and a cross section of 100� 200 nm2 as
displayed in Figs. 1(a) and 1(b). Since the respective
resonance frequency is dominated by the large tensile
stress [10,13], this configuration leads to resonances of
the fundamental modes that are approximately equally

spaced in frequency. Suitably biased gold electrodes pro-
cessed beneath the released SiN strings actuate the reso-
nators via dielectric gradient forces to perform out-of-
plane oscillations, as explained in greater detail elsewhere
[12]. The length and location of the gold electrodes is
properly chosen to be able to also excite several higher
order modes of the beams. The experiment is carried out at
room temperature in a vacuum below 10�3 mbar to avoid
gas friction.
The displacement is measured using an interferometric

setup that records the oscillatory component of the re-
flected light intensity with a photodetector and network
analyzer [12,14]. The measured mechanical response
around each resonance can be fitted using a Lorentzian
line shape as exemplarily seen in the inset of Fig. 2. The
thereby obtained values for the resonance frequency f and
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FIG. 1 (color online). Setup and geometry. (a) Scanning elec-
tron microscope picture of our sample; the lengths of the inves-
tigated nanomechanical silicon nitride strings are 35=n �m,
n ¼ f1; . . . ; 7g; their widths and heights are 200 nm and
100 nm, respectively. (b) Zoom-in of (a) the resonator (high-
lighted in green [dark gray]) is dielectrically actuated by the
nearby gold electrodes (yellow [light gray]); its displacement is
recorded with an interferometric setup. (c) Schematic mode
profile and absolute value of the resulting strain distribution
(color coded) of the second harmonic.
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quality factor Q for all studied resonators and observed
modes are displayed in Fig. 2 (filled circles). In order to
reproduce the measured frequency spectrum, we apply
standard beam theory (see, e.g., [15]). Without damping,
the differential equation describing the spatial dependence
of the displacement for a specific mode m of beam n
un;m½x� at frequency fn;m writes (with � ¼ 2800 kg=m3

being the material density [16]; E1, �0 are the (unknown)
real Young’s modulus and built-in stress, respectively):

1

12
E1h

2 @4

@x4
un;m½x� � �0

@2

@x2
un;m½x�

� �ð2�fn;mÞ2un;m½x� ¼ 0 (1)

Solutions of this equation have to satisfy the bound-
ary conditions of a doubly-clamped beam (displacement
and its slope vanish at the supports (un;m½�l=ð2nÞ� ¼
ð@=@xÞun;m½�l=ð2nÞ� ¼ 0, l=n: beam length). These con-

ditions lead to a transcendental equation that is numerically
solved to obtain the frequencies fn;m of the different

modes.
The results are fitted to excellently reproduce the mea-

sured frequencies, as seen in Fig. 2 (hollow squares). One
thereby obtains as fit parameters the elastic constants of the
microprocessed material E1 ¼ 160 GPa, �0 ¼ 830 MPa,
in good agreement with previously published measure-
ments [13].

For each harmonic, we now are able to calculate the
strain distribution within the resonator induced by the
displacement u½x� and exemplarily shown in Fig. 1(c).
The measured dissipation is closely connected to this
induced strain �½x; z; t� ¼ �½x; z� exp½i2�ft�. As in the
model originally discussed by Zener [17] we now assume
also for our case of a statically prestressed beam that the
displacement-induced strain and the accompanying oscil-
lating stress �½x; z; t� ¼ �½x; z� exp½i2�ft� are not per-
fectly in phase; this can be expressed by a Young’s
modulus E ¼ E1 þ iE2 having an imaginary part. The
relation reads again �½x; z� ¼ ðE1 þ iE2Þ�½x; z�. During
one cycle of oscillation T ¼ 1=f, a small volume �V of
length s and cross section A thereby dissipates the energy
�U�V ¼ As�E2�

2. The total loss is obtained by integrat-
ing over the volume of the resonator.

�Un;m ¼
Z
V
dV�U�V ¼ �E2

Z
V
dV�n;m½x; z�2 (2)

The strain variation and its accompanying energy loss
can be separated into contributions arising from overall
elongation of the beam and its local bending. It turns
out that here the former is negligible, despite the fact
that the elastic energy is dominated by the elongation
of the string, as discussed below. To very high accu-
racy we obtain for the dissipated energy �Un;m �
�=12E2wh

3
R
l dxð@2=ð@xÞ2un;mÞ2. A more rigorous deri-

vation can be found in the supplementary information [18].
The total energy depends on the spatial mode [through
�n;m, see exemplary Fig. 1(c)] and therefore strongly dif-

fers for the various resonances. To obtain the quality factor,
one has to calculate the stored energy, e. g., by integrating
the kinetic energy Un;m ¼ R

l dxA�ð2�fn;mÞ2un;m½x�2. The
overall mechanical quality factor is Q ¼ 2�Un;m=�Un;m.

A more detailed derivation can be found in [18].
Assuming that the unknown value of the imaginary part

E2 of the elastic modulus is independent of resonator
length and harmonic mode, we are left with one fit pa-
rameter E2 to reproduce all measured quality factors and
find excellent agreement (Fig. 2, hollow squares). We
therefore successfully model the damping of our nano-
resonators by postulating a frequency-independent mecha-
nism caused by local strain variation. We wish to point out
that the quality factor of, e.g., the second harmonic of a
particular beam is significantly higher if compared to the
fundamental one of a shorter beam with the same fre-
quency. This can be understood by the fact that the maxi-
mum strain and thus local dissipation occurs near the
clamping points and a higher harmonic has less clamping
points per antinode [see Fig. 1(c)].
Allowing E2 to depend on frequency, the accordance

gets even better, as discussed in detail in [18].
We now discuss the possible implications of our find-

ings, considering at first the cause of the high quality
factors in overall prestressed resonators and then the com-
patibility of our model with different microscopic damping
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FIG. 2 (color online). Resonance frequency and mechanical
quality factor. The harmonics of the nanomechanical resonator
show a Lorentzian response (exemplary in the inset). Fitting
yields the respective frequency and mechanical quality factor.
The main figure displays these values for several harmonics
(same color) of different beams as indicted by the color. To
reproduce the resonance frequencies, we fit a continuum model
to the measured frequencies. We thereby retrieve the elastic
constants of our (processed) material, namely, the built-in stress
�0 ¼ 830 MPa and Young’s modulus E1 ¼ 160 GPa. From the
displacement-induced, mode-dependent strain distribution, we
calculate (except for an overall scaling) the mechanical quality
factors. Calculated frequencies and quality factors are shown as
hollow squares, the responses of the different harmonics of the
same string are connected.

PRL 105, 027205 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

027205-2



mechanisms. In a relaxed beam, the elastic energy is stored
in the flexural deformation and becomes for a small test
volume U�V ¼ 1=2AsE1�

2. In the framework of a Zener
model, as employed here, this result is proportional to the
energy loss [see Eq. (2)] and thus yields a frequency-
independent quality factor Q ¼ E1=E2 for the unstressed
beam. In accordance with this finding, Ref. [10] reports a
much weaker dependence of quality factor on resonance
frequency, in strong contrast with the behavior of their
stressed beams.

Similar as in the damping model, the total stored elastic
energy in a beam can be very accurately separated into a
part connected to the bending and a part coming from the
overall elongation. The latter is proportional to the pre-
stress �0 and vanishes for relaxed beams, refer to [18] for
details. Assuming a constant E ¼ E1 þ iE2, Fig. 3 dis-
plays the calculation of the elastic energy and the qual-
ity factor for the fundamental mode of our longest
(l ¼ 35 �m) beam as a function of overall built-in
stress �0. The total elastic energy is increasingly domi-
nated by the displacement-induced elongation Uelong ¼
1=2�0wh

R
l dxð@=ð@xÞu½x�Þ2. In contrast the bending en-

ergy Ubend ¼ 1=24E1wh
3
R
l dxð@2=ð@xÞ2u½x�Þ2, which in

our model is proportional to the energy loss, is found to
increase much slower with �0. Thus one expects Q to
increase with �0, a finding already discussed by Schmid
and Hierold for micromechanical beams [19]. However,
their model assumes the simplified mode profile of a
stretched string and can not explain the larger quality
factors of higher harmonics when compared to a funda-
mental resonance of the same frequency. Including beam
stiffness, our model can fully explain the dependence of
frequency and damping on length and mode index, as
reflected in Fig. 2. It also explains the initially surprising
finding [20] that amorphous silicon nitride resonators ex-
hibit high quality factors when stretched whereas havingQ

factors in the relaxed state that reflect the typical magni-
tude of internal friction found to be rather universal in
glassy materials [21]. More generally we conclude that
the increase in mechanical quality factors with increasing
tensile stress is not bound to any specific material.
Since the resonance frequency is typically easier to

access in an experiment, we plot the quality factor vs
corresponding resonance frequency in Fig. 3(b), with
both numbers being a function of stress. The resulting
relation of quality factor on resonance frequency is (except
for very low stress) almost linear; experimental results by
another group can be seen to agree well with this finding
[22]. In addition, we show in [18] that although the energy
loss per oscillation increases with applied stress, the line-
width of the mechanical resonance decreases.
We will now consider the physical mechanisms that

could possibly contribute to the observed damping. As
explained in greater detail in [18], we can safely neglect
dampings that are intrinsic to any (bulk) system, namely,
clamping losses [23,24], thermoelastic damping [25,26]
and Akhiezer damping [26,27], since the corresponding
model calculations all predict damping constants signifi-
cantly smaller than the ones observed.
Therefore, we would like to discuss the influence of

localized (defect) states. Mechanisms with discrete re-
laxation rates will exhibit damping maxima whenever
the oscillation frequency matches the relaxation rate
[25,26,28]. As our model however is based on a
frequency-independent loss mechanism, we therefore con-
clude that a broad range of states is responsible for the
observed damping. This assumption is consistent with a
model calculation dealing with the influence of two-level
systems on acoustic waves [29] at high temperatures.
There, the strain modulates the energy separation of the
two states and thereby excites the system out of thermal
equilibrium; the subsequent relaxation causes the energy
loss. In addition, published quality factors of relaxed sili-
con nitride nanoresonators [20] cooled down to liquid
helium temperature display quality factors that are well
within the typical range of amorphous bulk materials [21],
therefore the observed damping mechanism can be as-
sumed to reduce to the concept of two-level systems at
low temperatures. Moreover, on a different sample chip we
measured a set of resonators showing quality factors that
are uniformly decreased by a factor of approximately 1.4
compared to the data presented in Fig. 2; the corresponding
data are presented in [18]. Their response can still be
quantitatively modeled resulting in an increased imaginary
part of Young’s modulus E2. We attribute this reduction in
quality factor to a nonoptimized RIE-etch step, that leads
to an increased density of defect states in the near-surface
region of the resonator. In contrast, the above mentioned
intrinsic mechanisms are not expected to be influenced by
such processing.
We wish to point out some limitations of our simple

model description. One is that the above stated simplifica-
tion to local two-level systems cannot be rigorously ap-
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FIG. 3 (color online). Elastic energy and mechanical quality
factor of the beam in dependence of stress. (a) The elastic
energies of the fundamental mode of the beam with l ¼
35 �m are displayed vs applied overall stress separated into
the contributions resulting from the overall elongation and the
local bending. The dashed line marks the strain of the experi-
mentally studied resonator �0 � 830 MPa, there the elongation
term dominates noticeably. (b) Quality factor and frequency are
calculated for varying stress �0. In order to compare the calcu-
lation with other published results, quality factor and stress are
displayed vs resulting frequency.
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plied at elevated temperatures as the concept of two-level
systems should be replaced by local excitable systems. The
other is that our assumption of a damping mechanism via
localized defects distributed uniformly along the resonator
cannot differentiate between surface and volume losses
(see [18]). In fact, measurements performed on beams
with larger width exhibit slightly higher quality factors
pointing toward a contribution of surface defects as does
the effect of sample processing discussed above, a well-
known observation in micro- or nanoresonators, see e.g.
[30,31]. At present we cannot conclude on the microscopic
nature of the defect states implicitly assumed in our model.
These could reflect the amorphous nature of the SiN reso-
nator but also be influenced by near-surface modification.

In conclusion, we systematically studied the transverse
mode frequencies and quality factors of prestressed SiN
nanoscale beams. Implementing continuum theory, we
reproduce the measured frequencies varying with beam
length and mode index over an order of magnitude.
Assuming that damping is caused by local strain variations
induced by the oscillation, independent of frequency, en-
ables us to calculate the observed quality factors with a
single interaction strength as free parameter. We thus
identify the unusually high quality factors of prestressed
beams as being primarily caused by the increased elastic
energy rather than a decrease in damping rate. Several
possible damping mechanisms are discussed; because of
the observed nearly frequency independent damping pa-
rameter E2, we attribute the mechanism to interaction of
the strain with local defects of not yet identified origin. One
therefore expects that defect-free resonators exhibit even
larger quality factors, as recently demonstrated for ultra-
clean carbon nanotubes [11].
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