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We consider the single particle spectral function for a two-dimensional clean superconductor in a

regime of strong critical thermal phase fluctuations. In the limit where the maximum of the super-

conducting gap is much smaller than the Fermi energy we obtain an exact expression for the spectral

function integrated over the momentum component perpendicular to the Fermi surface.
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In conventional BCS superconductors the amplitude of
the complex order parameter j�jei� vanishes at the tran-
sition temperature Tc. This is in contrast to the underdoped
cuprates, where experimental evidence [1,2] suggests that
the transition is instead driven by the disordering of the
superconducting phase through thermal fluctuations, while
leaving the magnitude j�j of the order parameter intact. A
quantitative measure for the strength of phase fluctuations
is provided by the ratio Q ¼ 2Tc=��sð0Þ, where �sð0Þ is
the zero temperature phase stiffness. This ratio determines
how close the transition is to being mean-field like. In BCS
superconductors Q � 1, while in the underdoped cuprates
Q� 1 [3]. The effects of thermal phase fluctuations on
d-wave superconductors have been investigated before,
see, e.g., Refs. [4–10]. A key objective of these works is
to identify clear signatures of thermal phase fluctuations in
single particle properties such as the spectral function
measured by ARPES and STS (scanning tunneling spec-
troscopy). The purpose of this Letter is to provide an exact
result for the partially integrated spectral function of a
phase fluctuating superconductor in a particular limit.
The latter quantity is defined as

�Pð!; k?Þ ¼
Z

dkkAð!;kÞ (1)

where kk, k? are the wave vector components parallel and

perpendicular to the Fermi velocity at the point of obser-
vation. We start by summarizing the essential assumptions
underlying the model proposed by one of the authors and
M. Khodas in [7,11]. The starting point is a superconductor
with a general order parameter that arises from pairing on a
Fermi surface, the shape of which we keep general for now.
In particular it could be open or consist of several pockets,
as is believed to be the case in underdoped cuprates [12–
15]. Our following analysis is based on the existence of
well defined quasiparticles, which is a reasonable assump-
tion for the nodal regions. The corresponding Bogoliubov–
deGennes Hamiltonian is

H ¼
Z

dr dr0½�þðrÞ�Tf�ðr� r0Þ�̂ð�irÞ�3

þ 1

2
~�ðr; r0Þ�þ þ H:c:g�ðr0Þ; (2)

where we have defined Nambu spinors �T ¼ ðc "; �c #Þ, �a
are Pauli matrices and the pairing amplitude can be cast in
the form

~�ðr; r0Þ ¼ �ðr� r0Þei�ðRÞ: (3)

Here �ðrÞ determines the symmetry of the order parameter
and R ¼ ðrþ r0Þ=2 is the center of mass coordinate.
Following the standard assumptions we neglect quantum

fluctuations of ~� and focus exclusively on thermal fluctua-
tions of the phase �. The key point is to choose an
appropriate model for these phase fluctuations. The effects
of fully three-dimensional fluctuations are well studied in
the literature [16] and are found to be small. On the other
hand, one would expect the spatial anisotropy of layered
materials like the cuprates to strongly enhance the role of
phase fluctuations. The extreme limit would be the purely
two-dimensional case, on which we focus in what fol-
lows. We emphasize that even purely 2D models have a
window of applicability to, e.g., thin films [17] and
La1:875Ba0:125CuO4, where the phase transition was found
to be of Berezinskii-Kosterlitz-Thouless (BKT) type [18–
20]. Similarly, the analyses of the temperature dependence
of magnetization, London penetration [21] depth and ter-
ahertz conductivity [22] for high quality underdoped
BiSCO crystals show that although the superconductivity
below Tc is of a 3D nature, the superconducting transition
in these systems is rather close to a BKT transition. In the
latter case our theory will be applicable in a temperature
regime above Tc, where the phase correlation length is
exponentially large and the phase fluctuations can effec-
tively be considered as critical.
In the mean-field approximation fluctuations of the order

parameter ~� are ignored, and the resulting Green function
takes the familiar BSC form
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GBCSð!;kÞ ¼ !þ �k
ð!þ i0Þ2 � �2k � �2ðkÞ : (4)

The corresponding spectral function � 1
� ImGBCS consists

of two delta function peaks centered at positive and nega-
tive frequencies. These peaks will be broadened by thermal
phase fluctuations. The following facts are of crucial im-
portance. (i) Since the long wavelength fluctuations are
classical, the electron frequency is conserved. (ii) Since in
the region of interest the amplitude j�j is assumed to be
fixed, self-consistency between the electron Green func-
tion and the order parameter is not an issue. Hence, the
calculation of the spectral function is reduced to solving
the Bogoliubov–deGennes equations for a particle with
pairing amplitude (3) and then averaging the result over a
given distribution of phase fluctuations. (iii) Since we are
interested only in long wavelength fluctuations, the distri-

bution function Pð�Þ ¼ e�F�=T can be fixed by symmetry
considerations: as long as the discrete lattice symmetries
include C4, the group of in-plane rotations by 90 degrees,
the distribution function must be spatially isotropic (apart
from irrelevant higher gradient terms). This leads to

F�

T
¼ �s

2T

Z
dxdy½ð@x�Þ2 þ ð@y�Þ2�; (5)

where the prefactor T�1 results from the integration over
imaginary time. In contrast to the phase fluctuations, the
Green’s function at low energies is very different in the
directions perpendicular and tangential to the Fermi sur-
face. In a process where an electron close to the Fermi
surface changes its momentum from k to kþ q by scat-
tering off the pairing potential its Green’s function is

G�1
0 ð!;kþ qÞ ¼ !� �ðkþ qÞ

� !� �ðkÞ � vqk �
q2?
2m

: (6)

Here qk and q? are the components of the momentum,

respectively, parallel and perpendicular to the Fermi ve-
locity r�ðkÞ. As a result of the isotropy of the distribution
F� of phase fluctuations the typical values of qk and q? are

the same and of order �max (the maximal gap). Therefore
the last term in (6) is proportional to the small parameter
�=�F. If we neglect such small corrections the electron
propagates along a straight line in real space and the
transverse momentum is conserved. The electron Green’s
function can then be calculated separately for each fre-
quency ! and Fermi surface point k. Under the assump-
tions summarized above, the initial problem (2) is re-

cast as a field theory described by the Lagrangian L ¼
F� þ ��!n

H�!n
with

H ¼ �i!nI � iv�z@x þ
~�ðk?; xÞ

2
�þ þ

~��ðk?; xÞ
2

��;

(7)

where ~�ðk?; xÞ ¼ �ðk?Þei�ðx;0Þ and we have introduced

�!n
¼ ðc !n;"; c

y
�!n;#ÞT . In (8) we have used coordinates

as shown in Fig. 1. As was pointed out in Ref. [7], the
model defined through Eqs. (7) and (5) is in fact equivalent
to the anisotropic spin-1=2Kondo problem. In terms of this
impurity model the phase fluctuations play the role of the
host, while a single Bogoliubov quasiparticle constitutes
the magnetic impurity. The reduction of the underlying
interacting electron model to a single-impurity problem
is possible because the emergent low-energy degrees of
freedom are noninteracting Bogoliubov quasiparticles. The
many-body aspects of the problem enter the determination
of j�j, but as this is treated as a parameter of our model we
can avoid the issue of its calculation. Under a field redefi-
nition

c !n;"
c y

�!n;#

 !
¼ �!n;"

�i�y
�!n;#

 !
;

c y
!n;"

c�!n;#

 !
¼ i�!n;"

�y
�!n;#

 !
;

(8)

and subsequent analytic continuation i!n ! !þ i0 we
obtain the Hamiltonian

Heff ¼ v�1ið!þ i0Þ�̂3 þHbulk½��

þ �ðk?Þ
2v

½�̂þei�ðy¼0Þ þ �̂�e�i�ðy¼0Þ�; (9)

where �̂a � �þ�a� is a shorthand notation for fermionic
bilinears. In this setting the coordinate x plays the role of
Matsubara time. It is dual to the momentum component kk
parallel to the Fermi velocity at the point of observation.
We note that in the approximation underlying (7) the
electron momentum parallel to the Fermi surface is con-
served so that the fermions � depend only on x, while the
phase field� is a function of both x and y. For convenience
we assign � the coordinate y ¼ 0. Since the fermion
number is conserved, the �̂ operators are in fact compo-
nents of a spin S ¼ 1=2.
The Hamiltonian Hbulk arising from (5) describes the

phase fluctuations. For temperatures below the BKT tran-
sition temperature TBKT ¼ ��s=2 only smooth field con-
figurations contribute so that

Hbulk½�� ¼ 1

8�d

Z 1

�1
dy½ð4�dÞ2�2 þ ð@y�Þ2�; (10)

FS

k x

y

FIG. 1 (color online). Geometry defining the model in (8).
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where� is the momentum density conjugate to the field�,
with equal time commutator ½�ðy1Þ; �ðy2Þ�� ¼ �i�ðy1 �
y2Þ. In order to be able to treat the temperature region T >
TBKT we need to allow singular (vortex) configurations of
the� field. The effects of vortices can be illustrated for the
example of the two point correlation function of bosonic
exponents. The latter takes the form

hei�ðr1Þe�i�ðr2Þi ¼
�������� b

�ðTÞ
��������2d

F

�
r12
�ðTÞ

�
; (11)

where d ¼ T=ð8TBKTÞ is the scaling dimension of the order
parameter, �ðTÞ is the correlation length and b� ðv=�FÞ is
the short distance cutoff. The short and long distance
behavior of the scaling function is Fð� � 1Þ ¼ ��2d and
Fð� > 1Þ � K0ð�Þ, respectively (see also [23]). Below the
transition (where � ¼ 1) the function (11) decays as a
power law and above the transition where the vortices are
relevant it decays exponentially with finite correlation
length �ðTÞ. We show below how to take this into account.
It was shown in Ref [24] that (9) and (10) are equivalent to
the anisotropic S ¼ 1=2 Kondo model in the regime of
extreme anisotropy gk � g?

HKondo ¼
X
k

vkaþk	ak	 þ h�z þ J

N

X
p;k

gkaþk	�
z
		0ap	0

þ g?
2

½aþk	�þ		0ap	0 þ H:c:�; (12)

where the magnetic field h is related to the real frequency
! in (9) by analytic continuation h ¼ i!þ 0. Our main
result derives from the observation that the partial density
of states (PDOS) defined by (1) is equal to the Green
function of � fermions at coinciding coordinates x.
Taking into account the change of variables (8) we find
that the PDOS is obtained by analytic continuation of the
impurity magnetization of the Kondo model (12)

�Pð!Þ=�0 ¼ 2ReMðh ¼ i!þ 0Þ: (13)

Here �0 is the bare density of states. This expression
provides a link between spectral properties of the single
electron problem (2) and thermodynamic properties of the
many-body theory (12). In order to utilize the known exact
expression forMðhÞ in the Kondo problem [25] we need to
relate the parameters Jgk, Jg? in (12) to d and �ðk?Þ. The
interactions in the Kondo model increase under renormal-
ization and enter the strong coupling regime at a scale TH

which is known from the exact solution [25]

TH � �Fðg?=gkÞ2�=gk : (14)

On the other hand the usual scaling argument gives TH �
�Fg

1=ð1�dÞ
? , which leads to the identification gk=2� ¼ 1�

d with d ¼ T=ð8TBKTÞ. The expression for the impurity
magnetization derived in [25] then reads (the parameter 

in [25] is related to d by 
 ¼ �ð1� dÞ):

Mðh=THÞ ¼ i

4�3=2

Z 1

�1
dx

xþ i0

�ð1� i x
1�dÞ�ð12 þ ixÞ

�ð1� i xd
1�dÞ

	 expf�2ix½lnðh=THÞ þ �a�g; (15)

where �a ¼ 1
2ð1�dÞ ½d lndþ ð1� dÞ lnð1� dÞ�. As a func-

tion of a complex variable, MðzÞ admits a power series
expansion in odd powers of z for jzj< 1 and concomitantly
is purely imaginary along the imaginary axis. By virtue of
the identification (13) this implies that the PDOS vanishes
at j!j< TH. Thus there is a sharp gap equal to TH in the
density of states, which at T � 0 is always smaller than the
mean-field gap �ðk?Þ. On the other hand, for jzj> 1 the
following expansion holds

�Pð!Þ
�0

¼ 1þ X1
n¼1

sin½2�nd�
2�3=2ðn!Þ �ðndÞ�

�
1

2
þ ð1� dÞn

�

	
�
THe

��a

!

�
2nð1�dÞ

; j!j> TH: (16)

We note that

lim
d!0

�Pð!Þ
�0

¼ j!jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 ��2

p �ðj!j � �Þ; (17)

which corresponds to the mean-field result. In order to
establish the relation between the gap TH and �ðk?Þ, d
we compare (16) to the perturbative expansion for the
PDOS in the model (9). Second order perturbation theory
gives

��P

�0

¼ cosð�dÞ�ð2� 2dÞ22d�2b2d

2!2ð1�dÞ ; (18)

which yields the desired identification

TH ¼ �ðk?Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� d

p ½ ffiffiffi
d

p
b�ðk?Þ�d=1�d½�ð1� dÞ�1=1�d:

(19)

Given the result (16) for the PDOS we may calculate the
full tunneling density of states. In the case of a d-wave
superconductor this results in

�ð!Þ / jb!j1�d: (20)

In Fig. 2 we show the PDOS (16) as a function of frequency
for several different temperatures. The most noticeable
feature is the persistence of a sharp gap. In addition we
observe that the singularity characteristic of the BCS
mean-field solution is strongly suppressed as T increases.
This demonstrates that thermal phase fluctuations have a
sizable effect on integrated spectral properties. In realistic
materials the sharp gap will be smeared by both impurity
scattering and the effects of Fermi surface curvature ne-
glected in our analysis. In Fig. 3 we plot the temperature
evolution of the gap TH. We see that temperature effects
are negligible. In particular this implies that the (d-wave)
form of the gap remains robust through the transition, at
least if vortices are ignored. As discussed above, the main
effect of vortices is to induce a finite correlation length
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�ðTÞ. In the corresponding Kondo picture this translates to
a gap in the excitation spectrum of the host. Exact results
are available in this case as well [26]. On a qualitative level
what happens in the Kondo picture is the following: as long
as the correlation length �ðTÞ is larger than the inverse
Kondo scale v=TH the vortices have little effect on the
physical properties. However, as soon as �ðTÞ falls below
v=TH the scaling terminates before the strong coupling
regime is reached. As a consequence the gap in the
PDOS is reduced for momenta close to the node k? <
1=½b��ðTÞ�. We have indicated this effect in the dotted
curve in Fig. 3.

In this Letter we have considered a model for thermal
phase fluctuations in a superconductor recently proposed in
Ref. [7]. By exploiting a mapping to an effective spin-1=2
Kondo problem we have derived an exact result for the
partially integrated spectral function (1). Our main re-
sult is that thermal fluctuations have a substantial effect
on the single particle spectral function. The best candi-

date for comparing our theory to experiment is
La1:875Ba0:125CuO4. ARPES and STS measurements per-
formed in [27] show that the d-wave gap is already well
formed at the BKT transition. It would be interesting to
map out the detailed temperature dependence of the spec-
tral function by ARPES in the region of strong diamagnetic
fluctuations T < 40 K and carry out a partial integration
along the nodal direction.
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FIG. 2 (color online). Partial DOS as a function of frequency
plotted for different temperatures T ¼ 8dTBKT. The ratio of
�ðk?Þ to the cutoff 1=b is fixed as 0.1. Because of particle-
hole symmetry �Pð�!Þ ¼ �Pð!Þ.
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FIG. 3 (color online). The dimensionless gap THb as a func-
tion of q ¼ �ðk?Þb for d ¼ 0:05, 0.125, 0.25. The lowest curve,
corresponding to T ¼ 2TBKT, has been modified to indicate the
effects of vortices as described in the main text.
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