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Using the modular invariance of the torus, constraints on the 1D patterns are derived that are associated

with various fractional quantum Hall ground states, e.g., through the thin torus limit. In the simplest case,

these constraints enforce the well-known odd-denominator rule, which is seen to be a necessary property

of all 1D patterns associated to quantum Hall states with minimum torus degeneracy. However, the same

constraints also have implications for the non-Abelian states possible within this framework. In simple

cases, including the � ¼ 1Moore-Read state and the � ¼ 3=2 level 3 Read-Rezayi state, the filling factor

and the torus degeneracy uniquely specify the possible patterns, and thus all physical properties that are

encoded in them. It is also shown that some states, such as the ‘‘strong p-wave pairing state,’’ cannot in

principle be described through 1D patterns.
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Introduction.—The study of fractional quantum Hall
(FQH) liquids has been among the most intriguing prob-
lems in condensed matter physics during the past few
decades, in both theory and experiment. On the theoretical
side, the construction of variational many-body wave func-
tions has traditionally played a pivotal role [1]. In princi-
ple, the possible variational constructions are limitless. A
systematic classification of FQH phases therefore requires
additional constraints, such as simplicity in a composite
fermion picture [2]. Another program to implement such
constraints is to require that the trial wave functions can be
obtained as conformal blocks in certain conformal field
theories (CFTs) [3]. The problem is then relegated to
identifying all conformal field theories leading to permis-
sible wave functions. On the other hand, it has recently
become appreciated that a large class of trial wave func-
tions can be characterized by simple sequences of integers,
either through the thin torus limit and adiabatic continuity
[4–9], or through Jack polynomials [10]. The patterns of
integers associated with viable quantum Hall states are in
turn subject to a number of consistency requirements, such
as rotational invariance of the associated Jack polynomials,
or constraints on the associated ‘‘patterns of zeros’’ studied
in Ref. [11]. A complete set of consistency requirements is
desirable in order to understand the possible quantum
numbers of all quantum Hall phases that are accessible
within this framework. In this Letter, it will be shown that
the one-dimensional (1D) patterns associated with the
ground state sectors of a quantum Hall phase are highly
constrained by modular invariance on the torus. This al-
lows one to more systematically identify patterns corre-
sponding to quantum Hall states, which may be
constructed explicitly through Jack polynomials once via-
ble patterns are identified. Intimate connections between
the latter and CFTs are currently being explored [12], such
that one may hope that states thus constructed also fit
within the paradigm based on CFTs. As it turns out, in
the simplest cases the constraints derived here just imply

the well-known ‘‘odd denominator rule,’’ which is found to
be required within this framework for all quantum Hall
states that have the ‘‘minimum torus degeneracy’’.
Furthermore, in some other cases of interest, it is found
that the filling factor and the torus degeneracy already
completely determine the associated set of 1D patterns.
These patterns, in turn, can be shown to have direct im-
plications for the statistics of quasiparticles, using the
method of Ref. [13]. This is, in particular, true for the
Moore-Read state [3], where the statistics are fully deter-
mined modulo a certain Abelian phase [13]. Similar state-
ments apply [14] to the k ¼ 3 Read-Rezayi state [15]. It is
thus found that within this framework, the filling factor and
the torus degeneracy alone may greatly constrain the low
energy physics in some cases. Furthermore, it will also be
shown that the ‘‘strong p-wave pairing’’ state does not
admit a description in terms of 1D patterns.
1D patterns and S duality.—The bulk properties of frac-

tional quantum Hall phases are expected to be independent
of the topology of the two-dimensional (2D) space they
live in. Here the topology of choice will be the torus. As an
example, let us consider how the patterns arise that are
associated with the three degenerate ground states of the
� ¼ 1 (Moore-Read) Pfaffian, i.e., 20202020. . .,
02020202. . . and 11111111. . . [5]. A standard basis of
the lowest Landau level (LL) is given by orbitals’n, which
are localized around x ’ nLx=L along the x axis, where Lx,
Ly are the dimensions of the torus, and L ¼ LxLy=2� is

the LL degeneracy. Moreover, the state ’n is completely
delocalized in y. We can expand the Pfaffian ground states
in a basis of the LL Fock space:

jGSi ¼ X

fmng
Cfmngjm1; m2 . . .mLi: (1)

Here, mn denotes the number of particles (bosons) in the
state’n. TheCfmng depend on the aspect ratio Lx=Ly. In the

thin torus limit Ly ! 0, the Pfaffian ground states evolve

adiabatically [5] into states dominated by a single pattern
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of occupancy numbers fmng, corresponding to the states
j202020 . . .i, j020202 . . .i, and j111111 . . .i, respectively.
The patterns of occupancy numbers characterizing these
limiting states still carry a wealth of information about the
original ‘‘large torus’’ quantum Hall states, and, in particu-
lar, carry the same quantum numbers under magnetic trans-
lations. As pointed out initially, a very large and important
class of quantum Hall states can be characterized through
simple patterns in this way. Moreover, on the torus the roles
of x and y can be exchanged through the modular S trans-
formation, which leaves the physics invariant. Hence the
same patterns can be obtained in the ‘‘dual’’ limit Lx ! 0.
However, the limiting states will then not assume the
simple occupancy patterns in the ’n basis referred to in
Eq. (1), but in a dual LL basis �’n. The �’n can be thought of
as a ‘‘rotated’’ version of the ’n, and are related to the ’n

via Fourier transform (see, e.g., Ref. [16]).
A rather stringent constraint on legitimate thin torus

patterns can be obtained by exploring the consequences
of modular S invariance on the representation of the mag-
netic translation group formed by the ground states. The
magnetic translation group is generated by operators Tx

and Ty that act on single particle LL orbitals via

Tx’nðzÞ ¼ ’nþ1ðzÞ Ty’nðzÞ ¼ e�2�i
L n’nðzÞ (2a)

Tx �’nðzÞ ¼ e
2�i
L n �’nðzÞ Ty �’nðzÞ ¼ �’nþ1ðzÞ; (2b)

cf., e.g., Ref. [16]. Here, L is the total number of LL
orbitals. The torus ground states of a given quantum Hall
phase form a representation of the magnetic translation
group. This representation cannot depend on the aspect
ratio of the torus. If a simple thin torus limit exists in the
sense described above, it allows one to immediately infer
the matricesRðTxÞ, RðTyÞ of this representation. In the limit

Ly ! 0, where the patterns extend along the x direction

and correspond to simple product states in the ’n basis,
(2a) implies that such product states are eigenstates of Ty

with eigenvalue expð�2�i=L
P

jnjÞ. Here, nj is the orbital
index of the jth particle in the pattern. Likewise, Tx per-
forms a right shift of the pattern.

As mentioned above, modular S invariance implies that
in the opposite thin torus limit, Lx ! 0, the same thin torus
patterns must appear. These patterns now extend along y
and correspond to simple product states in the �’n basis. In
general, however, a ground state that evolves into a given
1D pattern in one thin torus limit will evolve into a super-
position of such patterns in the opposite thin torus limit,
and vice versa. As a result, the representation matrices
obtained from the product ground states (patterns) in the
two mutually dual thin torus limits are unitarily equivalent,
but not identical. Equation (2) immediately implies the
following relations when passing from the Ly ! 0 limit

to the dual limit Lx ! 0:

RðTxÞ ¼ �RðTyÞ; RðTyÞ ¼ �RðTxÞy: (3)

In the above, RðTx;yÞ refers to the matrices describing Tx

and Ty in the basis of product ground states emerging in the

Ly ! 0 limit. Let us label these states by j�i, where �

denotes the associated simple pattern, e.g., � ¼ 2020 . . . ,
1111. . ., 0202. . . for the � ¼ 1 Pfaffian. �RðTx;yÞ are the

matrices describing the transformation properties of the

dual product states j ��i ¼ Ŝj�i, where Ŝ is the unitary
transformation that takes the orbital ’n into �’n. Equa-
tions (3) then immediately follow from Eqs. (2). Appar-
ently, the state j�i in general has different transformation
properties from its dual version j ��i. Hence these states
correspond to opposite thin torus limits of different degen-
erate ground states. On the other hand, so long as the
ground state patterns describe the translational properties
of the ground states for any aspect ratio of the torus (as
implied, e.g., by adiabatic continuity), the matrices R and
�R must form the same representation. They must therefore
be related by a unitary transformation, �RðTx;yÞ ¼
UyRðTx;yÞU. Equation (3) then becomes:

RðTxÞ ¼ UyRðTyÞU; RðTyÞ ¼ UyRðTxÞyU: (4)

The above says that the representation of the magnetic
translation group implied by the patterns must be ‘‘self-
dual’’. From given ground state patterns, it is always easy
to work out these matrices from (2) as described above.
Equation (4) then poses severe constraints on these
patterns.
Odd denominator rule.—A nontrivial torus degeneracy

is a hallmark of topologically ordered systems. It is well
understood that quite generally, if the system is character-
ized by a filling factor � ¼ p=q, with p and q coprime, its
minimum torus degeneracy is q [17,18]. This lower bound
is typically exceeded in time-reversal invariant systems. It
is, however, satisfied for the simplest fractional quantum
Hall states, such as those in the Abelian hierarchy.
Hierarchy states are also known for their compliance
with the ‘‘odd denominator rule,’’ according to which q
must be odd. This has been understood in various ways
[19,20]. Here it will be shown that for all states that can be
represented through periodic 1D patterns as discussed, the
odd denominator rule is a direct consequence of the mini-
mum torus degeneracy, together with the requirement (4).
Suppose, now, an incompressible quantumHall state can

be represented by a 1D pattern with a unit cell containing p
particles and q orbitals, Fig. 1, such that the LL filling
factor is � ¼ p=q. By translational symmetry, there must
be at least q ground states on the torus, since evidently q

FIG. 1. A generic periodic 1D pattern as it might appear in the
thin torus limit of a fractional quantum Hall state, for a given
topological sector. In addition, the individual orbitals may carry
a pseudospin label, as in Ref. [6]. The complete set of patterns
for all topological sectors are subject to the duality constraint (4).
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translations are required to transform the state back to
itself. If we further assume that the state has the minimum
torus degeneracy, it follows that all ground states are re-
lated by translation and that p and q are coprime. Instead,
however, I will start from the weaker assumption that all
ground states are related by translation. Using Eq. (4), this
is already sufficient to show that p and q are coprime, and
hence the state has the minimum torus degeneracy. To see
this, let the state associated with the pattern be denoted by

j�i. The states Tj
xj�i, j ¼ 0; . . . ; q� 1 then represent a

complete set of torus ground states. From these, we can
easily form eigenstates of Tx with q distinct eigenvalues. In
contrast, Ty is found to have q distinct eigenvalues only if p

and q are coprime. Note that the states Tj
xj�i are already

eigenstates of Ty with eigenvalues that can be read off

directly from the associated patterns as described above.
Each application of Tx changes the Ty eigenvalue by a

factor expð�2�i�Þ. It follows from this that if � ¼ p=q ¼
p0=q0 where p0 and q0 are coprime, the state j�i and its
translated counterparts have exactly q0 distinct Ty eigen-

values. The S-duality requirement Eq. (4) then implies that
q ¼ q0 since Tx and Ty must, in particular, have the same

spectrum within the ground state space. Hence also p ¼
p0. Thus one finds that whenever all torus ground states of a
specific quantum Hall phase are related by translation, any
permissible 1D pattern associated with this phase must
satisfy that the size q of its unit cell and the number p of
particles contained therein are coprime. To proceed, let us
further assume that the total number N of particles in the
state is even. This can be done without any loss of general-
ity, since when some incompressible quantum Hall fluid
exists for odd particle number on the torus, it also exists for
even particle number by means of doubling the system
size. The operators Tq

x and T
q
y are constant within the space

spanned by the q ground states, since j�i is an eigenstate of
both, and both operators commute with Tx. By the duality
constraint Eq. (4), both operators must therefore be equal.
By acting on j�i, one easily finds that Tq

x ¼ ð�1Þfp, where
f ¼ 1 for fermions and f ¼ 0 for bosons. This follows
since, with standard phase conventions, each fermion that
is translated from the Lth orbital to the 1st one will give
rise to a negative sign, as it must be commuted through
(N � 1) occupied fermion states. This happens exactly p
times when the operator Tx is applied q times to the
product state associated with j�i (see Fig. 1). On the other
hand, Tq

y ¼ ð�1Þpq. Again, we evaluate this by acting on

j�i. According to the prescription below Eq. (2), Tq
y j�i ¼

e
�2�iq

L

P
L
j¼1

nj j�i ¼ e�
2�i
M

P
M
k¼1

ðuþðk�1ÞqpÞj�i where M is the
number of unit cells in the pattern such that L ¼ Mq, N ¼
Mp. The integer u ¼ Pp

j¼1 nj equals the contribution of

the first unit cell to the sum such that the kth unit cell
contributes uþ ðk� 1Þpq. Since the u term drops out
modulo 2�i, the exponent reads �i�ðM� 1Þpq ¼ i�pq
mod 2�i, since Mp ¼ N was assumed to be even. Hence
Tq
y ¼ ð�1Þpq.

One thus finds that ð�1Þpq ¼ ð�1Þfp for any quantum
Hall state that can be represented through 1D patterns,
whenever all torus ground states are related by translation.
This implies that such states satisfy the odd denominator
rule: If q were even, p would have to be odd, and the
relation would be violated for fermions. It likewise follows
that for bosons, out of p and q exactly one needs to be even
[19,20]. Within this framework, the odd denominator rule
(and its bosonic counterpart) has thus been shown to be a
characteristic property of all states with minimum torus
degeneracy. It should be noted that for all states in the
Abelian hierarchy, bosonic and fermionic, patterns have
been worked out in Ref. [21]. It is pleasing to see that with
the above, it can be understood from the patterns them-
selves that some are legitimate for bosonic states only,
while some others only qualify for fermionic states.
The strong p-wave pairing state.—Quantum Hall states

that satisfy the minimum torus degeneracy are necessarily
Abelian. Within the framework of 1D patterns, this follows
from the fact that if all patterns are related by translation,
domain walls associated with elementary quasiparticle
type excitations always generate the same fixed shift be-
tween subsequent ground state patterns. In this case, the
degeneracy of topological sectors also remains fixed (cf.,
e.g., [16]), and does not grow exponentially with quasipar-
ticle number as required for non-Abelian states.
Conversely, however, Abelian states need not satisfy the
minimum torus degeneracy, and can thus violate the odd
denominator rule. Examples are found among the Halperin
bilayer states, whose thin torus patterns have been given in
[6]. While the patterns of such states are not all related by
translation, they do all have unit cells of the same size. This
must be true in order for the states to be Abelian. A
variation in unit cell size between different ground state
patterns will always introduce a combinatorial degree of
freedom when domain walls between different patterns are
formed, as becomes clear, e.g., by considering the Pfaffian
case [5,9,13]. In the interpretation of Ref. [22], this always
leads to nontrivial fusion rules, implying a non-Abelian
state. On the other hand, different patterns of equal unit cell
size may or may not do this. With this in mind, it is
interesting to ask whether an Abelian single-component
state of fermions at � ¼ 1=2with an eightfold torus degen-
eracy can be consistent with the framework described here.
These are the quantum numbers relevant to the Abelian
state now known as the ‘‘strong p-wave pairing’’ state [23],
which was originally discussed in Ref. [24] as a candidate
for the plateau at � ¼ 5=2 [25]. Here we can easily rule out
that this state fits into the 1D formalism. The elementary
unit cell of the corresponding 1D pattern could not have
size 8, for then all eight ground states must be related by
translation. This can be ruled out, since the state must then
be subject to the odd denominator rule as shown above.
Alternatively, an Abelian state at � ¼ 1=2 could corre-
spond to 1D patterns formed from two different unit cells
of size 4, or four different unit cells of size 2. However, this
is not possible either, since for fermions at � ¼ 1=2 there is
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only one type of elementary unit cell, modulo translations,
of size 4 or size 2. These unit cells are 1100 and 10,
respectively. This rules out that any Abelian state with
the quantum numbers of the strong pairing state can be
described in the language of 1D patterns. In fact, we can
also rule out a non-Abelian state with these quantum
numbers. Three different ground state patterns of unit
cell sizes 4, 2, 2 can be ruled out as in the above. Two
ground state patterns of unit cell sizes 6 and 2 are again
found to violate the S-duality constraint (4): As shown
above, at � ¼ 1=2 any given pattern, including its trans-
lated versions, can only account for 2 different Ty eigen-

values. However, there must be at least 6 different Tx

eigenvalues if a pattern has unit cell size 6.
Needless to say, the incompatibility of the strong pairing

state with a description in terms of 1D patterns does not
rigorously rule out the viability of such a state. It may,
however, imply that this state is of a qualitatively different
nature compared to other contenders that do allow a 1D
labeling, such as the � ¼ 1=2 Pfaffian. In this regard it is
worth noting that so far the strong pairing state seems to
have been quite elusive to exact diagonalization studies.

Non-Abelian and other states.—I finally remark that the
considerations made above allow one, in simple enough
cases, to positively identify the possible quantum Hall
states allowed within the 1D formalism, based on the filling
factor and the torus degeneracy alone. Indeed, within this
framework, these two data may specify the underlying
physics quite uniquely. As an example, I will analyze the
question of how many possible bosonic quantum Hall
states may exist at filling � ¼ 1 with a threefold torus
degeneracy, which fit into the 1D framework. This is easily
answered. The pattern 300300. . . can be ruled out, since it
already accounts for a threefold degeneracy. Hence all
ground states would be related by translation. However,
the state violates the bosonic analogue of the odd denomi-
nator rule, and so would then violate Eq. (4). Patterns with
unit cell sizes 2 and 1 are unique at � ¼ 1, and must then
constitute the correct ground state patterns. These are
2020. . . and 1111. . ., respectively, the patterns associated
with the � ¼ 1 Pfaffian. These satisfy S duality, as already
hinted at in Ref. [5]. Furthermore, it has been shown how
these patterns essentially encode the statistics of the state
[13], modulo a certain Abelian phase. The filling factor
� ¼ 1 and the torus degeneracy 3 thus specify the physics
quite uniquely within the framework discussed here.
Similar statements can be made about Laughlin states.
Moreover, the same constraints also fix the patterns of
the level 3 Read-Rezayi state at � ¼ 3=2 (fourfold degen-
erate). Here, a single pattern of unit cell size 4 is ruled out:
Such a unit cell must contain 6 particles, which is not
coprime with 4, in violation of the rules established above.
Two patterns of unit cell size 2 is the only other possibility
that can account for these quantum numbers. This uniquely
determines the patterns to be 3030. . . and 2121. . ., which
are just the patterns that have been associated to this state

in the literature [10,22]. Last, let us inquire about a state at
filling factor � ¼ 2=3, with torus degeneracy 6. These are
the quantum numbers of the bosonic Gaffnian state [26],
which, unlike the other states discussed so far, has been
proposed to be critical. Irrespective of its physical nature,
the associated patterns [10,27] are again unique based on
these quantum numbers. At � ¼ 2=3, possible unit cell
sizes must be multiples of 3. A single pattern of unit cell
size 6 can be ruled out as in the case of the Read-Rezayi
state. There must then be 2 patterns of unit cell size 3.
These are again unique, modulo translation: 200. . . and
101. . .. It remains to be seen if even in this—presumably
critical—case, the method of Ref. [13] can be used to
ascribe well defined statistics to this state.
I would like to thank A. Karlhede, E. Bergholtz, and

D.H. Lee for stimulating discussions. This work was sup-
ported by the National Science Foundation under NSF
Grant No. DMR-0907793.

[1] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[2] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[3] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[4] A. Seidel, H. Fu, D.-H. Lee, J.M. Leinaas, and J. E.

Moore, Phys. Rev. Lett. 95, 266405 (2005).
[5] A.Seidel and D.-H.Lee, Phys.Rev.Lett.97, 056804(2006).
[6] A. Seidel and K. Yang, Phys. Rev. Lett. 101, 036804

(2008).
[7] E. J. Bergholtz and A. Karlhede, Phys. Rev. Lett. 94,

026802 (2005).
[8] E. J. Bergholtz and A. Karlhede, J. Stat. Mech. (2006)

L04001.
[9] E. J. Bergholtz, J. Kailasvuori, E. Wikberg, T. H. Hansson,

and A. Karlhede, Phys. Rev. B 74, 081308(R) (2006).
[10] B. A. Bernevig and F. D.M. Haldane, Phys. Rev. Lett. 100,

246802 (2008).
[11] X.-G. Wen and Z. Wang, Phys. Rev. B 77, 235108 (2008).
[12] B. A. Bernevig, V. Gurarie, and S. H. Simon, J. Phys. A 42,

245206 (2009).
[13] A. Seidel, Phys. Rev. Lett. 101, 196802 (2008).
[14] J. Flavin and A. Seidel, http://meetings.aps.org/link/

BAPS.2010.MAR.V9.4.
[15] N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
[16] A. Seidel and D.-H. Lee, Phys. Rev. B 76, 155101 (2007).
[17] M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000).
[18] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[19] W. P. Su, Phys. Rev. B 34, 1031 (1986).
[20] R. Tao and Y.-S. Wu, Phys. Rev. B 31, 6859 (1985).
[21] E. J. Bergholtz and A. Karlhede, Phys. Rev. B 77, 155308

(2008).
[22] E. Ardonne, E. J. Bergholtz, J. Kailasvuori, and E.

Wikberg, J. Stat. Mech. (2008) P04016.
[23] N. Read and D. Green, Phys. Rev. B 61, 10 267 (2000).
[24] M. Greiter, X.-G. Wen, and F. Wiczek, Nucl. Phys. B 374,

567 (1992).
[25] R. Willett et al., Phys. Rev. Lett. 59, 1776 (1987).
[26] S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov,

Phys. Rev. B 75, 075317 (2007).
[27] E. Ardonne, Phys. Rev. Lett. 102, 180401 (2009).

PRL 105, 026802 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

026802-4

http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.63.199
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevLett.95.266405
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.97.056804
http://dx.doi.org/10.1103/PhysRevLett.101.036804
http://dx.doi.org/10.1103/PhysRevLett.101.036804
http://dx.doi.org/10.1103/PhysRevLett.94.026802
http://dx.doi.org/10.1103/PhysRevLett.94.026802
http://dx.doi.org/10.1088/1742-5468/2006/04/L04001
http://dx.doi.org/10.1088/1742-5468/2006/04/L04001
http://dx.doi.org/10.1103/PhysRevB.74.081308
http://dx.doi.org/10.1103/PhysRevLett.100.246802
http://dx.doi.org/10.1103/PhysRevLett.100.246802
http://dx.doi.org/10.1103/PhysRevB.77.235108
http://dx.doi.org/10.1088/1751-8113/42/24/245206
http://dx.doi.org/10.1088/1751-8113/42/24/245206
http://dx.doi.org/10.1103/PhysRevLett.101.196802
http://dx.doi.org/10.1103/PhysRevB.59.8084
http://dx.doi.org/10.1103/PhysRevB.76.155101
http://dx.doi.org/10.1103/PhysRevLett.84.1535
http://dx.doi.org/10.1103/PhysRevB.69.104431
http://dx.doi.org/10.1103/PhysRevB.34.1031
http://dx.doi.org/10.1103/PhysRevB.31.6859
http://dx.doi.org/10.1103/PhysRevB.77.155308
http://dx.doi.org/10.1103/PhysRevB.77.155308
http://dx.doi.org/10.1088/1742-5468/2008/04/P04016
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1016/0550-3213(92)90401-V
http://dx.doi.org/10.1016/0550-3213(92)90401-V
http://dx.doi.org/10.1103/PhysRevLett.59.1776
http://dx.doi.org/10.1103/PhysRevB.75.075317
http://dx.doi.org/10.1103/PhysRevLett.102.180401

