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We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence

are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a

low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the

magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field

has a nontrivial evolution—linked to the nature of the hydrodynamics turbulence.
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The question of transitions between statistical solutions
is central to the behavior of many out-of-equilibrium sys-
tems in physics and geophysics [1–4]. As one particular
example addressed here, we note that natural dynamos are
intrinsically dynamical. Formally, the coupled set of mo-
mentum and induction equations is invariant under the
transform ðu;BÞ ! ðu;�BÞ so that states with opposite
polarities can be generated from the same velocity field (u
and B are, respectively, the velocity and magnetic fields).
In the case of the geodynamo, polarity switches are called
reversals [5] and occur at very irregular time intervals [6].
Such reversals have been observed recently in laboratory
experiments using liquid metals, in arrangements where
the dynamo cycle is either favored artificially [7] or stems
entirely from the fluid motions [4,8]. In these laboratory
experiments, as also presumably in Earth’s core, the ratio
of the magnetic diffusivity to the viscosity of the fluid
(magnetic Prandtl number PM) is quite small. As a result,
the kinetic Reynolds number RV of the flow is very high
because its magnetic Reynolds number RM ¼ RVPM needs
to be large enough so that the stretching of magnetic field
lines balances the Joule dissipation. Hence, the dynamo
process develops over a turbulent background, and in this
context it is often considered as a problem of ‘‘bifurcation
in the presence of noise.’’ For the dynamo instability, the
effect of noise enters both additively and multiplicatively, a
situation for which a complete theory is not currently
available. Some specific features have been ascribed to
its onset (e.g., bifurcation via an on-off scenario [9]) and
to its dynamics [10]. Turbulence also implies that pro-
cesses occur over an extended range of scales; however,
in a low magnetic Prandtl number fluid the hydrodynamic
range of scales is much wider than the magnetic one. In
laboratory experiments, the induction processes that par-
ticipate in the dynamo cycle involve the action of large
scale velocity gradients [4,11,12], with possible contribu-
tions of velocity fluctuations at small scales [13–15].

Building upon the above observations, we propose here
a simple model which incorporates hydromagnetic fluctu-
ations (as opposed to ‘‘noise’’) in a dynamo instability. Our
goal here is not to derive a low dimensional model from the

interaction of selected modes (see, for instance, [16] and
references therein) but to assume the existence of such
large scale symmetry-breaking features and to investigate
the effects of turbulence fluctuations onto the dynamics of
reversals. The models stems from the approach introduced
in [17] for the hydrodynamic studies.
We consider an ‘‘energy cascade’’ model, i.e., a shell

model aimed at reproducing a few of the relevant charac-
teristic features of the statistical properties of the Navier-
Stokes equations [18]. In a shell model, the basic variables
describing the ‘‘velocity field’’ at scale rn ¼ 2�nr0 � k�1

n

is a complex number un satisfying a suitable set of non-
linear equations (here r0 ¼ 2). There are many versions of
shell models which have been introduced in literature.
Here we choose the one referred to as Sabra shell model.
Let us remark that the statistical properties of intermittent
fluctuations, computed using either shell variables or the
instantaneous rate of energy dissipation, are in close quali-
tative and quantitative agreement with those measured in
laboratory experiments, for homogeneous and isotropic
turbulence [18]. The MHD shell model—introduced in
[19]—allows a description of turbulence at low magnetic
Prandtl number since the steps of both cascades can be
freely adjusted [20,21]. Although geometrical features are
lost, this is a clear advantage over 3D simulations [22,23].
We consider here a formulation extended from the Sabra
hydrodynamic shell model:

dun
dt

¼ i

3
½�nðu; uÞ ��nðB; BÞ� � �k2nun þ fn; (1)

dBn

dt
¼ i

3
½�nðu; BÞ ��nðB; uÞ� � �mk

2
nBn; (2)

where n ¼ 1; 2; . . . and

�nðu;wÞ¼knþ1½ð1þ�Þunþ2w
�
nþ1þð2��Þu�nþ1wnþ2�

þkn½ð1�2�Þu�n�1wnþ1�ð1þ�Þunþ1w
�
n�1�

þkn�1½ð2��Þun�1wn�2þð1�2�Þun�2wn�1�;
(3)

for which, following [17], we chose � ¼ �0:4. For this
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value of �, the Sabra model is known to show statistical
properties (i.e., anomalous scaling) close to the ones ob-
served in homogenous and isotropic turbulence. The
model, without forcing and dissipation, conserves the ki-
netic energy EV ¼ �njunj2, the magnetic energy EB ¼
�njBnj2, and the cross-helicity Reð�nunB

�
nÞ. In the same

limit, the model has a Uð1Þ symmetry corresponding to a
phase change expði�Þ in both complex variables un and Bn.
The quantity �nðv;wÞ is the shell model version of the
transport term ~ur ~w. The forcing term fn is given by fn �
S1nf0=u

�
1; i.e., we force injection in the large scale with a

constant power. We want to introduce in Eq. (2) an extra
(large scale) term aimed at producing two statistically
stationary equilibrium solutions for the magnetic field.
For this purpose, we add to the right-hand side of (2) an
extra term M2ðB2Þ; namely, for n ¼ 2, Eq. (2) becomes

dB2

dt
¼ F2ðu; BÞ �M2ðB2Þ � �mk

2
2B2; (4)

where F2ðu; BÞ is a shorthand notation for i=3½�2ðu; BÞ �
�2ðB; uÞ�. The term M2ðB2Þ is chosen with two require-
ments: (1) it must break theUð1Þ symmetry, and (2) it must
introduce a large scale dissipation needed to equilibrate the
large scale magnetic field production. There are many
possible ways to satisfy these two requirements. Here we
simply choose M2ðB2Þ ¼ amB

3
2. We argue, see the discus-

sion at the end of this Letter, that the two requirements are
a necessary condition to observe large scale equilibration.
From a physical point of view, symmetry breaking also
occurs in real dynamos since the magnetic field is directed
in one preferential direction which changes sign during a
reversal. Thus symmetry breaking is a generic feature
which we introduce in our model by prescribing some
large scale geometrical constrain. On the other hand, large
scale dissipation must be responsible for the equilibration
mechanism of the large scale field. The choice of a non-
linear equilibration is made here to highlight the existence
of a nonlinear center manifold for the large scale dynamics
[24]. In other words, Eq. (4) with M2ðB2Þ ¼ amB

3
2 is

supposed to describe the ‘‘normal form’’ dynamics of the
large scale magnetic field. Note that our assumption onM2

does not necessarily imply a time scale separation between
the characteristic time scale of B2 and the magnetic turbu-
lent field. Finally, since the system has an inverse cascade
of helicity [19], we set B1 ¼ 0 as a boundary condition at
large scale in order to prevent nonstationary behavior.

The free parameters of the model are the power input f0,
the magnetic viscosity �m, and the saturation parameters
am. Our numerical simulations have been computed with
n ¼ 1; 2; . . . ; 25. Actually, the parameter f0 could be elim-
inated by a suitable rescaling of the velocity field. We shall
keep it fixed to f0 ¼ 1� i. In Fig. 1 we show the ampli-
tude of hjB2ji and the magnetic energy EB � h�njBnj2i as
a function of �m for � ¼ 10�7, where the symbol h� � �i
stands for time average. In this system, a possible estimate

of Reynolds numbers is RV ¼ ffiffiffiffiffiffiffiffiffiffihEVi
p

=k2� ¼ ffiffiffiffiffiffiffiffiffiffihEVi
p

r0=4�

and RM ¼ ffiffiffiffiffiffiffiffiffiffihEVi
p

r0=4�m; in the runs shown, hEVi � 0:3,
this yields RV � 1:5� 106 and RM � 0:15=�m.
For very large �m, the magnetic field does not grow.

Then, for �m greater than some critical value, hB2i, as well
as EB, increases for decreasing �m. Eventually, hjB2ji
saturates at a given value while EB still increases, showing
that for �m small enough a fully developed spectrum of Bn

is achieved. This type of behavior is in agreement with
previous studies of Taylor-Green flows [25,26], s2t2 flows
in a sphere [27], or MHD shell models [28]. In the top inset
of Fig. 1 we show the magnetic and energy spectrum for
�m ¼ 10�3. Finally, in the lower inset we plot the magnetic
dissipation �B ¼ �m�nk

2
nhjBnj2i and the large scale dissi-

pation due to Mn. Note that at the dynamo threshold we
observe a sudden bump in the magnetic dissipation which
decreases for decreasing �n. At relatively small �m, the
magnetic dissipation becomes constant and quite close to
the large scale dissipation.
We can reasonably predict the behavior of hjB2j2i as a

function of �m by the following argument. The onset of
dynamo implies that there exists a net flux of energy from
the velocity field to the magnetic field. At the largest scale,
the magnetic field B2 is forced by the velocity field due to
the terms F2ðu; BÞ. The quantity A � R½F2ðu; BÞB�

2� is the
energy pumping due to the velocity field which is inde-
pendent of B2 and am. Thus, from Eq. (4) we can obtain

1

2

djB2j2
dt

¼ A� amjB2j2ðB2
2r � B2

2iÞ � �mk
2
2jB2j2; (5)

whereB2r andB2i are the real and imaginary part of B2. For
large �m, the amplitude of B2 is small and the symmetry-
breaking term proportional to am is negligible. Under this
condition, and with the boundary condition constraints, we
expect from (5) or (7) that the behavior of B2 is periodic, as
it has been observed in the numerical simulations. On the
other hand, for relatively small �m, the nonlinear equili-

0

1

2

3

4

5

 1  10  100  1000  10 000  100 000  1×106

 1/νm

EB

<|B2|2>

 0.8
 0.6
 0.4
 0.2

 0
 1000 10

ε B
,ε

m

 1/νm

-20

-10

 20 15 10 5

n

<|un|2>

<|Bn|2>

FIG. 1 (color online). Main figure: The behavior of hEBi (red
triangles) and hjB2j2i (green circles) as a function of �m for fixed
value of � ¼ 10�7. The dotted blue line is the solution of (5).
Upper inset: Energy spectra for Bn (green triangles) and un (red
circles) for the case �m ¼ 0:001. Lower inset: The amount of
magnetic dissipation (solid red triangles) �B ¼ h�n�mk

2
njBnj2i

and the dissipation due to the large scale term �m ¼
amhjB2j2ðB2

2r � B2
2iÞi (open green triangles).
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bration breaks the Uð1Þ symmetry and B2i becomes rather
small and statistically stationary solutions can be observed

with B2
2r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
A=am

p
. Computing A from the numerical

simulations, we can use (5) to predict how hjB2j2i depends
on �m. The result is shown in Fig. 1 by the dotted blue line
with rather good agreement.

We are interested in studying the behavior of the mag-
netic reversal, if any, as a function of �m and, in particular,
in the region where jB2j saturates, i.e., it becomes inde-
pendent of �m. In Fig. 2, we show three different time
series of the B2r ¼ ReðB2Þ as a function of time for three
different, relatively large, values of the magnetic diffusiv-
ity. The figure highlights the two major items discussed in
this Letter, namely, the observation of reversals between
the two possible large scale equilibria and the dramatic
increase of the time delay between reversals for increasing
�m values. Note that this long time scale, as observed in the
upper panel of Fig. 2, is much longer than the characteristic
time scale of B2 near one of the two equilibrium states. The
system spontaneously develops a significant time scale
separation, for which given polarity is maintained for times
much longer than the magnetic diffusion time. In Fig. 3 we
show the average persistence time (i.e., time between
reversals) as a function of �m. More precisely, let us define
tn as the times at which B2ðtnÞ ¼ 0 and B2 has opposite
sign before and after tn. Then the persistence time is
defined as �n � tn � tn�1, while the average persistence
time � is defined as the average of �n. In order to obtain a
significant value of �, we performed rather long numerical
simulations (from 103 to 104 longer than the time series
shown in Fig. 2).

Figure 3 clearly shows that for large �m, � becomes
extremely large (note that the figure is in log-log scale).
Thus, even if neither hjB2j2i nor �d depend on �m, the
effect of magnetic diffusivity is crucial for determining the
average persistence time. For each numerical simulation

shown in Fig. 3, we computed the average persistence time
� and its error bar (see inset). In order to develop a
theoretical framework aimed at understanding the result
shown in Fig. 3, we assume, in the region where hjB2j2i is
independent of �m, that B2i � 0 and that the term F2ðu; BÞ
can be divided into an average forcing term proportional to
B2r and a fluctuating part

F2ðu; BÞ ¼ �B2 þ�0; (6)

where � depends on f0 and �0 is supposed to be uncorre-
lated with the dynamics of B2, i.e., h½�0B�

2�i ¼ 0. Note that
in the context of the mean-field approach to MHD, the first
term�B2 would correspond to an ‘‘alpha effect.’’ Using (6)
we can rewrite the equations for B2 as follows:

dB2

dt
¼ �B2 � amB

3
2 þ�0; (7)

where we neglect the dissipative term since � � �mk
2
2 in

the region of interest. Equation (7) must be considered an
effective equation describing the dynamics of the magnetic
field B2 and its reversals, and the fluctuations �0 incorpo-
rate the turbulent fluctuations from the velocity and mag-
netic field turbulent cascades. It is the effect of �0 that
makes the system ‘‘jump’’ between the two statistically
stationary states. Using (5) we can obtain� ¼ ffiffiffiffiffiffiffiffiffi

Aam
p

while
the two statistical stationary states can be estimated as
	B0, B

2
0 ¼ �=am. The effective equation (7) is a stochas-

tically differential equation. By using large deviation the-
ory [29] applied to stochastic differential equations, we can
predict � to be

�� exp

�
�2

am�

�
¼ exp

�
A

�

�
; (8)

where � is the variance of the noise �0 acting on the sys-
tem. Let us note that A and � must have the same dimen-
sion, namely, ½B�2=time. Thus, we write � as � ¼ Af,
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FIG. 2 (color online). Time behavior of B2r for three different
values of �m (displayed on the right-hand side) and constant �.
The short blue segment in the upper panel shows 100td, where td
is the dissipative time scale computed as td ¼ 1=ðk22�mÞ. One
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FIG. 3 (color online). Average persistence time � as a function
of the magnetic viscosity �m for am ¼ 0:1 and � ¼ 10�7. The
dotted green line corresponds to the fit given by Eq. (9). In the
inset we plot 1= lnð�Þ and its error bars (computed from the
standard deviation) versus �m to highlight the linear behavior
predicted by (9). Note that the error bars are smaller than the
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where f is a function of the relevant dimensionless varia-
bles. In our problem the dimensionless numbers expected
to play a role for the dynamical behavior of the magnetic
field are the Reynolds number RV , the magnetic Reynolds
number RM (or equivalently the magnetic Prandtl number

PM), and the quantity Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aam=ð�2

mk
4
2Þ

q
, which is an

effective Reynolds number, corresponding to the efficiency
of energy transfers from the velocity field to the magnetic
field at large scale. Given the fact that we operate at
constant power input and RV ¼ const, we expect f to be
a function of (Rm;RM) only and we also expect the effec-
tive magnetic Reynolds number to be proportional to the
integral one (Rm / RM). We then show below that a very
good description of our numerical results is obtained using
the lowest order approximation fðRm; RMÞ ¼ R�

M � RM,
where R�

M is a critical magnetic Reynolds number below
which reversals are not observed. This choice leads to � ¼
Að��

m � �mÞ=uL and finally to

�� exp

�
C

��
m � �m

�
; (9)

where C is a constant independent of �m. This functional
form is displayed in Fig. 3; it agrees remarkably with the
observed numerical values of � for a rather large range. In
the inset of Fig. 3 we show 1= logð�Þ as a function of �m to
highlight the linear behavior predicted by Eq. (9). The
physical statement represented by (9) is that the average
persistence time should show a critical slowing down for
relatively large �m. In other words, we expect that fluctua-
tions around the statistical equilibria increase as RM in-
creases. The increase of fluctuations may not be monotonic
for very large RM, which explains why we are not able to fit
the entire range of �m shown in Fig. 3.

Finally, we comment on the choice of a nonlinear term in
Eq. (4). Actually, we can avoid nonlinear equilibration to
obtain the same (qualitative) results. In Fig. 4 we show two

cases obtained with M2ðB2Þ ¼ �	B2 with the constraints
B2i ¼ 0 and 	 ¼ 0:13. The equilibration mechanism is
therefore linear while the symmetry breaking is obtained
by the constraint B2i ¼ 0. Thus the two requirements, large
scale dissipation and symmetry breaking, are satisfied.
Figure 4 shows that statistical equilibria can be observed
independent of nonlinear mechanism. Moreover, by chang-
ing the magnetic diffusivity, we can still observe a rather
large difference in the average persistence time. We argue
that this effect is independent of the particular choice of the
equilibration mechanism since it is dictated by dimen-
sional analysis and large deviation theory.
We thank Stephan Fauve for interesting discussions.
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