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We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of

exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the

condensate is described at mean-field level in terms of a generalized Gross-Pitaevskii equation. The drag

force on a small moving object and the onset of fringes in the density profile are shown to have a sharp

threshold as a function of the velocity; a generalized Landau criterion is developed to explain this behavior

in terms of the dispersion of elementary excitations. Metastability of supercurrents in multiply-connected

geometries is shown to persist up to higher flow speeds.
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Superfluidity is among the most remarkable consequen-
ces of macroscopic quantum coherence in condensed mat-
ter systems and manifests itself in a number of fascinating
effects [1,2]. A unified description of these phenomena is
obtained in the framework of the so-called two-fluid hydro-
dynamics, in which the macroscopic condensate wave
function adds up to the standard hydrodynamic variables
[3]. The phenomenon of macroscopic coherence is not
restricted to systems at (or close to) thermodynamical
equilibrium such as liquid Helium, ultracold atomic gases,
or superconducting materials, but has been observed also
in systems far from thermodynamical equilibrium, whose
stationary state is determined by a dynamical balance of
driving and losses. Most remarkable examples are lasers
and, more recently, Bose-Einstein condensates of magnons
in magnetic solids [4] and exciton polaritons in semicon-
ductor microcavities [5–7]. In particular, the issue of super-
fluidity in this latter system has attracted a significant
interest from both the theoretical [8–14] and experimental
[10,15,16] points of view.

Recent experiments with resonantly pumped polariton
condensates [15] have demonstrated superfluidity as a
dramatic reduction in the intensity of resonant Rayleigh
scattering, as originally predicted in [8]. The situation is
less clear in the case of nonresonant or parametric (OPO)
pumping schemes: recent experiments in this latter con-
figuration [16] have observed propagation of polariton
bullets without apparent friction, which is in contrast
with the predictions of a naı̈ve Landau criterion based on
the elementary excitation spectrum predicted in [12].
Another aspect of superfluidity, namely metastability of
supercurrent states in multiply-connected geometries was
theoretically investigated in [9,10] and experimentally
confirmed in [10].

The present Letter reports a comprehensive theoretical
investigation of the meaning of superfluidity for nonreso-
nantly pumped polariton condensates [5–7]. Emphasis is
given to the novel features that originate from their non-

equilibrium character. As condensation in both nonreso-
nant and OPO pumping schemes originates from the same
Uð1Þ spontaneous symmetry-breaking mechanism, we ex-
pect that our results can provide useful theoretical insight
into the superfluidity features observed in [16] under an
OPO pumping.
At the mean-field level, the condensate dynamics can be

described in terms of the Gross-Pitaevskii equation (GPE)
[1], which was recently generalized to nonequilibrium
condensates by including the effect of pumping and losses
[13,17]. This description has been able to explain a number
of experimental observations, e.g., the ring-shaped mo-
mentum distribution of spatially narrow condensates
[6,18], the synchronization transition [19], and the sponta-
neous appearance of vortices [20]. Nonetheless, the im-
plicit assumption that the pumping mechanism is not
frequency selective can lead to unphysical predictions,
e.g., that in a spatially homogeneous or ringlike geometry
condensation is equally likely to occur in any momentum
state. Kinetic calculations [21] have pointed out the sig-
nificant frequency dependence of the polariton-polariton
scattering processes that are responsible for replenishing
the condensate. A simplest generalization of the GPE to
include a frequency dependence of the pumping has the
form:
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The amplification efficiency (proportional to the pumping
strength P) decreases to zero a frequency �K above the
bottom of the polariton branch. Assuming a linear depen-
dence of amplification on frequency, a temporally local
form is maintained in (1). The other terms describing gain
saturation (r), losses (�), polariton mass (m), polariton-
polariton interactions (g), external potential (Vext) have the
same meaning as in [13,17].
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We first consider the evolution of the system starting
from an initial state with no condensate c ¼ 0. If the
strength of pumping is enough to overcome losses P>
�, the c ¼ 0 state is dynamically unstable against the
creation of a finite condensate amplitude in any of the
low-momentum modes for which @k2=2m<�Kð1�
�=PÞ. The rate of this instability is maximum at k ¼ 0
and decreases for increasing k. This fact is in agreement
with the experimental observation of condensation natu-
rally occurring around k ¼ 0 as soon as the sample is
sufficiently large and free from disorder [5].

In spite of this natural preference, condensation can be
forced to occur in finite momentum state by seeding the
system with a short coherent light pulse at the desired kc,
which amounts to adding a term of the form Fs�ðtÞeikcr to
the right-hand side of (1). The efficiency of this procedure
to create finite momentum condensates was numerically
assessed in [9] and a related configuration was experimen-
tally demonstrated for the OPO pumping scheme in [10].
Well after the seed pulse, the density of the moving con-
densate tends to its steady-state value:

nc ¼ jc j2 ¼ 1
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The dynamical stability of the moving condensate is to
be assessed by linearization of the generalized GPE (1)
around the stationary solution. Examples of the
Bogoliubov dispersion !BogðqÞ for moving condensates

are shown in Fig. 1. In the leftmost panels (a) and (b),
the limit�K ! 1 of a negligible frequency dependence of
pumping is considered. Apart from the global Doppler

tilting of the real part due to the finite condensate velocity,
the plotted dispersion fully recovers the diffusive character
first discussed in [11–13]: a flat dispersion around the
condensate wave vector and a negative imaginary part
quadratically growing in q. In this limit, stable condensates
exist for any value of kc.
The effect of a frequency-selective pumping is ad-

dressed in the other panels where�K has a large, but finite
value. The central panels (c) and (d) refer to the case with a
very small condensate density, where the real part of the
Bogoliubov mode frequency reduces to the single-particle
one. On the other hand, the characteristic damping rate of
density fluctuations (the gapped mode at q ¼ 0) and of the
high-momentum modes is suppressed by a critical slowing
down phenomenon [13]. As a result, the imaginary part of
the low-energy modes around q ’ �kc become positive,
which signals a dynamical instability. Eventually, this in-
stability leads to the disappearance of the original conden-
sate and the formation of another stable condensate in a
lower momentum state.
The right panels (e) and (f) refer to the case of a higher

density. In this case, the damping rate of all modes other
than the Goldstone one is comparable to the polariton
lifetime � and the frequency dependence of pumping is
not able to destabilize the moving condensate. The stability
domain as a function of the momentum kc and the density
nc of the condensate is summarized in Fig. 2: as the density
is increased, stable condensates survive up to larger mo-
menta. It is of crucial importance to note that this insta-
bility mechanism has no direct counterpart in standard
equilibrium superfluids and is effective even in the absence
of any defect potential.
In the presence of weak defects, the frictionless flow of

equilibrium condensates is limited to flow speeds below
the Landau critical velocity vc ¼ minkfRe½!o

BogðkÞ�=kg,
where!o

BogðkÞ is the real part of the Bogoliubov dispersion
for a condensate at rest. For dilute systems, vc coincides

with the sound velocity cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnc=m

p
[1]. As a conse-

quence of the diffusive character of the Goldstone mode,
a naı̈ve application of this Landau criterion to the
Bogoliubov dispersion of nonequilibrium condensates an-

-5 0 5
  -10

  -5

  0

  5

  10

R
e[

ω
B

og
(k

)]
 / 

γ

-5 0 5
-10

-5

0

5

10

-5 0 5
-10

-5

0

5

10

-5 0 5

q / kγ

  -1

  0

Im
[ ω

B
og

(k
)]

 / 
γ

-5 0 5

q / kγ

-1

0

-5 0 5

q / kγ

-1

0

-5 0 5

-0.2

-0.1

0

0.1

(a) (c) (e)

(b) (d) (f)

FIG. 1 (color online). Elementary excitation spectrum of a
moving, spatially homogeneous, nonequilibrium condensate as
described by the linearized generalized GPE around the steady-
state solution. Parameters: kc=k� ¼ 4, r=� ¼ 1, g=� ¼ 1, �K=

� ¼ 50, Panels (c),(d) and (e),(f) correspond to different values
of the density, ncg=� ¼ 0:1 [(c),(d)] and ncg=� ¼ 1 [(e),(f)],
respectively. Inset: magnified view of (d). Panels (a),(b): same as
panels (e),(f) in the limit of a frequency-independent pumping

�K ¼ 1. Momenta are measured in units of k� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
m�=@

p
.

FIG. 2. Growth rate of the maximally unstable mode as a
function of condensate momentum kc and density nc. The region
above the dashed line corresponds to dynamically stable con-
densates. Same system parameters as in Figs. 1(c) and 1(f).
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ticipated in [11–13] would instead give a vanishing pre-
diction for the critical velocity, vc ¼ 0: Bogoliubov waves
are emitted in a moving condensate hitting a (weak) defect
for any value of the condensate speed.

However, a complete picture of nonequilibrium conden-
sates requires taking into account the nontrivial dynamics
of the imaginary part of the Bogoliubov dispersion.
Numerical plots of the density perturbation induced by a
single weak stationary defect in a (dynamically stable)
moving condensate can be calculated from the generalized
GPE (1) and are shown in Fig. 3 for different values of the
condensate velocity. In contrast to the predictions of the
naı̈ve Landau criterion, the induced perturbation closely
resembles the one induced in an equilibrium condensate
described by the standard GPE [22]: at high speeds [panel
(a)], the defect creates a series of parabolic fringes that
propagate away from the defect; at low speeds [panel (c)],
the propagating fringes are replaced by a localized pertur-
bation in the vicinity of the defect. Remarkably, the char-
acteristic speed at which the fringes disappear is of the

order of the equilibrium sound speed cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnc=m

p
, but

does not correspond to any feature in the Bogoliubov
dispersions shown in Fig. 1.

As it was pointed out in a different context in [23], the
emission pattern by a localized monochromatic source is
better understood in terms of the (complex) wave vector of
the emitted wave at the given (real) perturbation frequency
rather than in terms of the (complex) resonance frequency
of an elementary excitation with a given (real) wave vector.
In our case of a static defect, the perturbation applied to the
condensate has zero frequency. As one can see in Fig. 4(b),

the wave vector ~k of the corresponding Bogoliubov wave
starts having a finite real part only after a branching point:
extended oscillations in the density are observed as soon as

the real part of ~k exceeds the imaginary part.
This behavior is reflected in the drag force F exerted by

the moving condensate onto the defect as a function of the
condensate velocity [Fig. 4(a)]. In terms of the perturbed
density profile nðrÞ, the drag force is given by F ¼
�R

d2rnðrÞrrVdefðrÞ [24]. As a consequence of the finite
lifetime of the Bogoliubov modes, the drag force has a
nonvanishing value at all v. Still, it shows a pronounced
threshold at a velocity value that closely corresponds to the
onset of fringes in the density profile. Comparison of the

curves for different values of the nonequilibrium parameter
�=gnc confirms that systems closer to equilibrium display
a sharper threshold. The equilibrium limit of [24] is recov-
ered in the limit � ! 0. Constancy of the ratios P=� and
rnc=� guarantees a homogeneous scaling of the different
loss or amplification terms on the second line of (1). The
effect of �K on the drag force is minor.
It is important to note that the present theory is based on

the mean-field equation (1) for the condensate wave func-
tion: in the steady state that we are considering here, this
oscillates at the single frequency !c. In spite of the differ-
ent underlying mechanism, the phenomenology that one
observes in Fig. 4(a) is however similar to the one of finite
temperature equilibrium condensates where a nonvanish-
ing friction appears at all velocities as a consequence of the
thermal, noncondensed component. The contribution of
the noncondensed component in the present nonequilib-
rium case will be the matter of future work along the lines
of [25].
So far, no experiment has investigated yet the superfluid

properties of polariton condensates under nonresonant
pumping. Still, it is likely that this generalized form of
the Landau criterion provides at least a partial explanation
of the recent experimental observation of superfluidity in a
OPO regime [16].
Supersonic flows in equilibrium condensates in ring-

shaped geometries are generally strongly sensitive to the
presence of defects: as soon as nodes appear in the con-
densate wave function, the topological stability of the
supercurrent state is broken, which leads to a rapid slow
down of the condensate motion. The finite damping rate of
excitations in polariton condensates introduces a substan-
tial modification to this picture: the perturbation created by
each defect is not able to propagate on long distances, but
rather remains localized in space on a length scale in-

versely proportional to Im½~k�. As a result, we expect it is
much harder to break the topological stability of the
supercurrents.
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FIG. 4 (color online). Panel (a): Force exerted on a weak
stationary defect by a moving condensate as a function of the
condensate velocity v for different values of the nonequilibrium
parameter �=gnc ¼ 0, 0.1, 1, 2 (thin black solid line, blue solid
line, green dashed line, red dotted line), in units of F� ¼
@
2=m�3, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@
2=mgnc

p
. The ratios P=� and rnc=� are

kept constant. The other parameters are the same as in Fig. 3.
Panels (b),(c): Real and imaginary parts of the complex wave
vector ~k of the zero-frequency Bogoliubov mode as a function of
v. The wave vector is taken to be parallel to the flow velocity.
The parameters correspond to the green curve of panel (a).
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FIG. 3. Density perturbation created in a moving condensate
by a stationary weak defect for three values of the condensate
velocity v=cs ¼ 1:5, 1, 0.4 across the critical value for super-
fluidity. Parameters: ncg=� ¼ ncr=� ¼ 1, �K=� ¼ 50.
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This physical picture is confirmed by numerical simula-
tions of the time evolution under the generalized GPE (1)
starting from an initial condition with a supersonic flow.
Periodic boundary conditions are assumed. For a low de-
fect density, the supercurrent state is maintained for very
long times with no sign of decay. The characteristic
Cerenkov-like density patterns in the vicinity of each de-
fect are spatially separated and do not interfere [Fig. 5(a)].
The momentum distribution in k space [Fig. 5(b)] shows
the condensate peak right at the initial momentum state and
a much fainter resonant Rayleigh scattering ring [8]. The
situation is different for a higher density of defects. In this
case, the real space density perturbations created by the
different defects substantially overlap with each other. As a
result, interference effects are more likely to create nodes
in the condensate wave function and therefore to trigger
dissipation of the supercurrent. The occurrence of such a
process is apparent in Fig. 5(d) as a much reduced late-time
value of the condensate momentum.

This fact illustrates another important difference with
respect to standard, equilibrium condensates: in that case,
the dissipation of a supercurrent leads to a significant
heating and reduction of the condensate fraction. In the
present case, the condensate is transferred to a lower
momentum state but maintains its long-range coherence;
the momentum broadening that is visible in Fig. 5(d) is
related to the localized modulation created by the defects.
Even if the presence of some frequency dependence in the
pumping is crucial to concentrate the population in low-
energy modes, the final shape of the momentum distribu-
tion depends only weakly on its specific form.

In conclusion, we have theoretically investigated the
superfluidity properties of nonequilibrium condensates of
exciton polaritons. Contrary to previous expectations,
superfluidity is shown to be robust against particle loss.
Fringes in the density profile are created by a moving
defect only above a critical speed; correspondingly, the
drag force shows a pronounced thresholdlike behavior.
Remarkably, metastability of supercurrents is found to
persist even for velocities well above the critical speed.
We are indebted to Vincenzo Savona, Cristiano Ciuti,

and Davide Sarchi for continuous enlightening exchanges.
Stimulating discussions with E. Cancellieri, J. Keeling, C.
Menotti, F. Piazza, D. Sanvitto, and A. Smerzi are
acknowledged.
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FIG. 5 (color online). Real (linear color scale) and momentum
space (logarithmic color scale) densities of a nonequilibrium
condensate after a temporal evolution of �t ¼ 300 for an initial
momentum k=k� ¼ 2 and two different densities of defects. The

dots in the real space panels indicate the position of the defects.
The square in the momentum space panels indicates the initial
momentum of the condensate. Parameters are the same as in
Fig. 4, except for �K=� ¼ 10.
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