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Even very weak correlated disorder potentials can cause extreme fluctuations in Hamiltonian flows. In

two dimensions this leads to a pronounced branching of the flow. Although present in a great variety of

physical systems, a quantitative theory of the branching statistics is lacking. Here, we derive an analytical

expression for the number of branches valid for all distances from a source. We also derive the scaling

relations that make this expression universal for a wide range of random potentials. Our theory has

possible applications in many fields ranging from semiconductor to geophysics.
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Conservative particle or wave flows can be strongly
influenced by very weak, smooth disorder potentials. A
prominent example is the electron flow in the two-
dimensional electron gas of high mobility semiconductor
heterostructures at low temperatures. Even though impu-
rity scattering in these systems only leads to small-angle
deflections in the individual electron paths, the electron
flow can become strongly branched on length scales much
shorter than the mean free path [1]. This branching is
caused by the formation of random caustics in an initially
homogeneous flow [2]. In two dimensions, caustics usually
come in pairs, which constitute two focal lines emerging
from a cusp point, forming a branch (cf. Fig. 1). Any flow
that can be approximated by Hamiltonian dynamics and
that is subject to the forces of a correlated weak random
potential will exhibit the formation of random caustics.
Thus branching is a wide spread effect which dominates in
the spatial regime between ballistic and diffusive motion.
Branched flow has been observed on length scales ranging
from a few micrometers, affecting the transport properties
of semiconductor and microwave devices [1,3–5], up to
several thousand kilometers, influencing the sound propa-
gation in the oceans [6]. Branching and random caustics
have also been used to explain the appearance of freak
ocean waves [7–9] and the activation of rain showers in
turbulent clouds [10].

In this Letter, we study the statistics of branches in two-
dimensional Hamiltonian systems with smooth correlated
disorder. We answer the fundamental question of how
many random caustics exist on average per unit length at
a certain distance away from the source [cf. Fig. 1(a)]. This
question was first asked and answered for the much simpler
system of the free ray dynamics of an initially distorted
optical wave front by Berry and Upstill [11]. For the
dynamics in a continuous random potential it has only
been addressed for distances far away from the source
[2], where the number of caustics grows exponentially
and individual branches become less visible. Here, we
present an explicit analytical expression which is valid
for all distances from the source. Furthermore, we show

that by a nontrivial scaling relation the branch count func-
tion can be described by a single universal curve. This
curve is valid for a very wide range of random potentials,
which not only differ in strength and spatial scale, but also
in their type of correlations. We verify our theory by
extensive numerical simulations.
Figure 1 illustrates a typical Hamiltonian flow in a

correlated disorder potential. These systems are generi-
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FIG. 1 (color). (a) Branched flow (dark gray is high intensity)
from a plane source, caused by a weak disorder potential (low
potential in green, high potential in yellow, with standard devia-
tion � ¼ 6% of the kinetic energy of the particles). We want to
count the number of branches per unit length (along the red line)
at some distance away from the source. The number of branches
is (to a very good approximation) equal to half the number of
caustics (red dots). (b) Intensity profile �ðyÞ along the red line.
Branches, bounded by two caustics and with an increased
density in the region between them, show up clearly. The initial
density is normalized to one, which is drawn as a dashed black
line, together with a line for zero density. (c) Histogram of the
values of the random potential used in (a) with the same color
code. The potential is clearly very weak compared to the energy
of the flow, which is here normalized to one (indicated by the
dashed vertical line).
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cally modeled by a Hamiltonian H ¼ p2=2þ Vðx; yÞ,
where p is the momentum and where the potential is a
Gaussian random field with zero mean hVðrÞi ¼ 0 with
r ¼ ðx; yÞ and a two-parameter correlation function of the
form cðrÞ ¼ hVðr0ÞVðr0 þ rÞi ¼ �2gðjrj=‘cÞ. The angular
brackets denote an ensemble average over disorder realiza-
tions. Here, ‘c describes the correlation length and � the
strength of the random potential V. We note that, since ‘c is
the only length scale in the Hamiltonian, our results are
independent of a rescaling of ‘c. We choose to retain ‘c in
all expressions for clarity and in order to allow for easier
application of our results. The form g of the correlation is
arbitrary except for smoothness and integrability condi-
tions which are discussed later. We use the classical analog
of a plane wave initial condition, i.e., particles moving
initially with equal velocity in the x direction and zero
velocity in the transverse y direction. The total energy of
the particles is E0 ¼ 1=2, which corresponds to a mean
velocity of v0 ¼ 1. Since we assume that the potential is
weak (up to approximately � � 10% of E0) the particles
can be assumed to move fast in the x direction. This
corresponds to small-angle scattering of the flow particles
and allows an approximate quasi-2D treatment in which x
is identified with t. The validity of this approximation is
confirmed by numerical simulations.

After traversing a distance of several correlation lengths
of the disorder, the cumulative deflection by the random
potential has the effect of generating caustics, i.e., regions
of very high intensity in the flow, which appear as
branches. Since a branch is always bounded by two caus-
tics, we proceed by giving the number of branches per unit
length NbðtÞ as half the number of caustics. It is given by

NbðtÞ ¼ 1

2
lim
L!1

1

L

�Z L

0
dy0�ðmðtÞÞj@y0mðtÞj

�
; (1)

where mðtÞ is a function (specified below) which is zero
when a caustic is encountered. Equation (1) is equivalent to
the expression used in [11] to calculate the number of
caustics for a corrugated optical wave front which prop-
agates through free space. In our case, we need to introduce
several approximations in order to treat this expression
analytically. First, we introduce the time it takes to travel
along a trajectory to reach a caustic tc and change the
expression to

NbðtÞ ¼ 1

2
lim
L!1

1

L

�Z L

0
dy0

�ðt� tcÞ
j _mðtÞj j@y0mðtÞj

�
; (2)

which will later allow us to use the probability to reach a
caustic along a trajectory, PcðtÞ ¼ h�ðt� tcÞi, which is
known from the literature. We proceed by analyzing the
statistical properties of mðtÞ and nðtÞ � @y0mðtÞ. The func-
tion mðtÞ is the matrix element i ¼ j ¼ 1 of the stability
matrix @�iðtÞ=@�jð0Þ, where �i is a phase space variable

and �1 is the first spatial coordinate [12]. In the quasi-2D
approach, there is only one spatial coordinate, denoted by
y. The function mðtÞ ¼ @yðtÞ=@yð0Þ vanishes when a caus-

tic is encountered, just as we require. Similarly, nðtÞ is
defined as the first component (i ¼ j ¼ k ¼ 1Þ of the
extended stability tensor @2�iðtÞ=ð@�jð0Þ@�kð0ÞÞ. With

a ¼ ðm; _m; n; _nÞ we can calculate the equations of motion
for a using the Hamiltonian given above as

_a1ðtÞ ¼ a2ðtÞ; a1ð0Þ ¼ 1;

_a2ðtÞ ¼�@yyVðt; yÞa1ðtÞ; a2ð0Þ ¼ 0;

_a3ðtÞ ¼ a4ðtÞ; a3ð0Þ ¼ 0;

_a4ðtÞ ¼�@yyVðt; yÞa3ðtÞ�@yyyVðt; yÞa1ðtÞ2; a4ð0Þ ¼ 0:

A Fokker-Planck equation for the probability density of a
can be derived in the quasi-2D approach as

@tPða; tja0; t0Þ ¼ ½�a2@a1 � a4@a3 þ �2
1a

2
1@a2a2

þ 2�2
1a1a3@

2
a2a4 þ @2a4a4ð�2

2a
4
1

þ �2
1a

2
3Þ�Pða; tja0; t0Þ; (3)

where �2
1 ¼ 1

2

R1
�1 dx @4cðx;yÞ

@y4
jy¼0 and �2

2 ¼ � 1
2 �R1

�1 dx @6cðx;yÞ
@y6

jy¼0 (calculated using stochastic integration

methods [13]). Equation (3) cannot be solved in general.
However, from this equation, we can obtain a closed set of
differential equations for the moments of the components
of a, which are linear and can easily be solved. In this way,
we obtain the second moment of m ¼ a1 as

hm2ðtÞi ¼ 1

3
½e2�t þ 2e��t cosð ffiffiffi

3
p

�tÞ�; (4)

with � ¼ ð�1=
ffiffiffi
2

p Þ2=3, which has been previously derived
using different methods [14]. The second moment of n ¼
a3 is calculated analogously; the result is

hn2ðtÞi ¼ �2
2

210�2
1

f98e��t cosð ffiffiffi
3

p
�tÞ þ 49e2�t þ e21

1=32�t

þ 2e�211=3�t cos½ð7� 35=2Þ1=3�t� � 150g: (5)

We note that the expressions for the moments are only
exact in the limit � ! 0; however, the comparison between
theory and simulations shows good agreement for the
whole range of � considered here. An example is shown
in Fig. 2(a).
Next, we require an expression for the probability to

reach a caustic along a trajectory, PcðtÞ. We construct a
compound solution from results obtained by White and co-
workers [15–17] by using their approximation for small t
and by using the long-time approximation of

PcðtÞ ¼ 1=½6:27ð2�2
1Þ�1=3� ¼ 1=t0; (6)

where t0 is the mean time (or distance) between two
caustics. We will use t0 as a time scale. Note that this

differs from the time scale in the literature, t0 ¼ ��2=3‘c
(e.g., in [2]) by a prefactor which depends on �1. This
allows us to treat different correlation functions. For com-
pleteness, we state the full expression for PcðtÞ here:
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PcðtÞ ¼
� ½�2ð4��2

1Þ�1=2t�5=2 þ CFð2�2
1Þ1=3�e�	1ð2�2

1
Þ1=3t��4=ð12�2

1
t3Þ if t � t1

1=t0 if t > t1;
(7)

where t1 is the value at which the solution for small times
drops below the long-term solution, 1=t0, and where � �
1:854, 	1 � 0:281, CF � 0:314. We compare the analyti-
cal solution Eq. (7) to numerical simulations in Fig. 2(b).

We now turn to evaluating Eq. (2). This will be done by
construction of a short-time and a long-time approxima-
tion. For short times compared to t0 we approximate
hj _mðtÞji / 1=t0 at the caustics. We also assume hjnðtÞji to
be statistically independent and (up to a factor) well ap-

proximated by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihn2ðtÞip

. These approximations have been
confirmed numerically. We can then write

Nshort
b ðtÞ � c1t0PcðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hn2ðtÞi

q
; t < t0: (8)

Note that nðtÞ has units of inverse length because of the
prefactor �2=�1 of Eq. (5), which is proportional to 1=‘c.
It also encodes the dependence on different types of corre-
lation functions, since it varies for different functional
forms of the correlation function. The constant c1 does
not depend on the random potential and is determined
numerically to be c1 � 0:033.

For the long-term asymptotics, we assume _m and n to be
statistically independent and the mean of their absolute
value, like their even moments, to be growing exponen-
tially. Since Pc � const for large t, the exponent 	 of
jn= _mj must be equal to the one obtained in [2,18,19].
The scaling with �2=�1 is the same as in the short-time
solution. We therefore give the long-time asymptotics of
the number of branches as

N
long
b ðtÞ � c2ð�2=�1Þt0PcðtÞe	ðt=t0Þ; t * t0; (9)

with 	 � 2:87, which differs from the value used in
[2,18,19] because of our definition of t0 [Eq. (6)]. We
numerically determine the constant c2 � 0:040.

Since both approximations overestimate Nb in the re-
gions where they are not applicable, we can construct a
compound solution by always choosing the one that gives a
lower value. The result is then given by

NbðtÞ ¼
�
Nshort

b ðtÞ if Nshort
b ðtÞ � Nlong

b ðtÞ
N

long
b ðtÞ if Nshort

b ðtÞ>N
long
b ðtÞ: (10)

From this equation, we observe that rescaling the number
of branches with �2=�1 and the time with t0, the resulting
curve is universal in the sense that it is independent of the
parameters of the random potential and independent of the
particular functional form of the correlation function.
We have performed extensive numerical simulations to

confirm our theory, using a range of values for the parame-
ters � and ‘c and several different correlation functions. We
note that for our theory we require �1 and �2 to be finite.
This implies that the correlation function has to be 6 times
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FIG. 2 (color online). (a) Second moments ofmðtÞ (circles are numerical values, solid line is the analytical prediction) and nðtÞ (stars
are numerical values, solid line is the analytical prediction). (b) Probability to reach a caustic along a trajectory PcðtÞ, numerical
calculation (stars) and composite analytical solution (solid line). All calculations in this figure are performed using an ensemble of
Gaussian correlated disorder potentials with � ¼ 0:04E0 and ‘c ¼ 0:1.
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FIG. 3 (color online). Short- and long-term asymptotics as
well as compound solution of NbðtÞ, numerical data for � ¼
0:04E0 and with ‘c ¼ 0:1.
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differentiable at the origin and that the integrals defining
�1 and �2 have to be finite. These conditions are fulfilled
by most standard correlation functions of smooth poten-
tials. Here, we simulate potentials of Gaussian type
[cðjrjÞ ¼ cðrÞ ¼ �2 expð�r2=‘2cÞ] as well as correlation
functions with exponential [cðrÞ ¼ �2 sechðr=‘cÞ] and
with power-law decays [cðrÞ ¼ �2ð1þ r2=‘2cÞ�
 for 
 ¼
1; 2; 3; 4]. In Fig. 3, we compare the approximations
Eqs. (8) and (9), the compound solution Eq. (10), and
numerical data from one set of parameters of the random
potential.

Simulations for the different correlation functions and
different sets of the parameters of the random potentials, �
and ‘c, are shown in Fig. 4(a). The same curves, this time
scaled in both axes, are shown again in Fig. 4(b). All curves
collapse onto our theoretical prediction. Also included are
data from a fully two-dimensional simulation, which fit the
quasi-2D simulations and the theoretical prediction equally
well.

In conclusion, we have given an expression for the
number of branches that a flow develops in a random
potential for all distances from the source by construction
and combination of two asymptotic solutions. We have
shown that, by correct scaling, there is one universal curve
for the number of branches. The time axis has to be scaled
by t0, which depends on the parameters and the functional
form of the correlation function. This corresponds to a

typical spatial scale proportional to ‘c�
�2=3, which is for

small �well separated from the scale of the mean free path,
‘c�

�2. The scaling of NbðtÞ depends nontrivially on inte-
grals of the correlation function via �2=�1. Our results
offer fundamental insights into the way different correla-
tion functions of random potentials affect transport in
weakly random media and can be applied to the great

variety of physical systems in which branched flow is
observed.
This work has been supported by the DFG research
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FIG. 4 (color online). (a) Number of branches NbðtÞ for different sets of parameters of the random potential (� in percent of the total
particle energy), different correlation functions, and with a fully two-dimensional simulation (2D). We note again that t corresponds to
the distance away from the source. The type of correlation function is indicated by Roman numerals: Gaussian (I), exponential (II), and
power law with 
 ¼ 1; 2; 3; 4 (III, IV, V, VI) (cf. text for details). (b) Same curves as in (a), but t scaled by t0 and NbðtÞ by �2=�1,
together with analytical prediction (solid black line).
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