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The work required to solve for the fully interacting N boson wave function, which is widely believed to

scale exponentially with N, is rearranged so the problem scales order by order in a perturbation series as

N0. The exponential complexity reappears in an exponential scaling with the order of our perturbation

series allowing exact analytical calculations for very large N systems through low order.
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Introduction.—Recently it has been shown that the so-
lution to the general quantummechanicalN-body problem,
for both fermions [1,2] and bosons [3], is quantum Merlin
Arthur (QMA) hard where the complexity class QMA is an
extension of the complexity class nondeterministic poly-
nomial time (NP) to the quantum domain [4]. This means
that these problems, in the worst case scenarios, are un-
likely to have efficient algorithms for their solution even on
quantum computers.

In practice, the required resources on a classical com-
puter (computational time, memory, etc) for an essentially
exact solution scale exponentially with N [5], the number
of particles, often doubling for every particle added. With
current numerical resources, this problem ‘‘hits a wall’’
around N ¼ 10 (within a factor of 2 for systems without
symmetry) [6]. This intractability, called the ‘‘exponential
wall’’, is manifested in various ways depending on the
method. For example, the number of basis configurations
for modest systems can increase exponentially, yielding
matrices for which storage and accurate manipulation are
impossible. Exponential behavior can appear in the num-
ber of grid points required to describe the quantum wave
function. Monte Carlo simulations involving fermions see
an exponential growth of the statistical error due to the
‘‘sign problem’’ resulting in exponentially long simulation
times.

Despite decades of research, no polynomial solution has
been found for these problems. Numerous approximations
have been proposed in fields such as quantum chemistry,
condensed matter, nuclear physics, and atomic physics
which try to capture the essential physics while circum-
venting the exponential N scaling of the exact solution.
These methods typically truncate a perturbation series in
the case of many-body perturbation theory [7–9] or sample
only part of the Hilbert space. Examples of the latter
include the correlated basis methods which perform calcu-
lations in a subset of correlated states [10,11]. The renor-
malization group method of Wilson judiciously selects
states kept at each iteration [12]. Coupled cluster methods
truncate an exact expansion for the wave function in a way
that is size-extensive [13]. Monte Carlo simulations are
performed in polynomial time for bosons by sampling only

the important part of the Hilbert space [14–16]. Density
functional methods [6,17,18] use various models to ap-
proximate the energy as a functional of the density.
Determining the full quantum wave function, however,

is important for understanding and controlling the quantum
world which depends on a detailed understanding of the
microscopic interactions of quantum particles. The inter-
connectedness of the quantum world associates with every
alternative a complex amplitude—not a probability. This
interconnectedness gives rise to the exponential growth of
numerical complexity for an exact solution and is respon-
sible for the richness of quantum phenomena such as
entanglement (the basis of quantum computing), quantum
interferometry (the basis of ultrasensitive detection and a
route to quantum control), and superfluidity (which is not
yet fully understood on the microscopic level).
Approximations in N-body methods must be carefully
made to preserve this interesting physics.
While the exponential wall will continue to be scaled by

advances in numerical resources, such as the advent of
quantum computers [19], it is sensible to ask if analytical
mathematical techniques could be used to greater advan-
tage to soften the wall or to reconfigure the problem to shift
some of the work into an analytical regime that remains
robust as N increases.
Such an approach to solve for a fully-interacting wave

function for the N-body problem for identical bosons is
being developed [20–22]. This approach, which truncates a
perturbation series, uses analytical mathematical tech-
niques, namely, group theory and graphical techniques, to
shift work away from numerical computation for a single
N to analytical work valid for all N (N is a parameter), and
so remains robust as N increases. Despite its analytic
nature, this method can obtain an exact solution at each
order for a completely general interaction. The series is
invariant under the N! operations of a point group isomor-
phic with the symmetric group SN . The full quantum
N-body problem, as represented by this series, scales as
N0. However, we show in this Letter that the exponential
complexity of the problem reappears in an exponential
wall that scales with the order of the perturbation series,
moving the work from numerical effort that scales expo-
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nentially with N to analytic work that scales exponentially
with order. Essentially the problem has been restructured
so the effort is spent obtaining exact results analytically
through low order for all N, rather than obtaining results
that approximate the exact solution (i.e. to higher order) for
a single N.

The SN invariant perturbation expansion.—The SN in-
variant perturbation expansion is obtained using the in-
verse spatial dimension, � ¼ 1=D, as the perturbation
parameter. The choice of parameter is important because
it leads to a maximally symmetric structure at zeroth order.
As � ! 0, i.e. D ! 1, a system of N particles assumes a
structure in which every particle is equidistant and equi-
angular from every other particle, a maximal symmetry
impossible to achieve in lower dimensions. The point
group of this configuration is isomorphic with the symmet-
ric group of N particles, SN; thus the tensor blocks needed
at each order in the series must be invariant under the N!
operations of this point group. This severe symmetry re-
striction results in ‘‘small’’ finite basis sets that do not grow
with N, are complete at each order, and allow for an exact
solution at each order using group theory and graphical
techniques. As N increases, the group theory and graphical
techniques ‘‘hold their own’’ resulting in an N0 scaling.
(The basis elements remain invariant under the N! opera-
tions of SN, a number which grows as N grows putting
increasing restrictions on the set.) Group theory is used to
separate the N scaling problem away from the interaction
dynamics allowing the N scaling to be treated as a straight
mathematical issue. Once this mathematical work, which
involves significant analytical effort, has been completed at
a given order, it never has to be repeated again for a new
interaction or a different N, i.e., the problem scales as N0.

The perturbation series is developed by expanding the
dimensionally scaled, Jacobian-weighted Hamiltonian,

wave function, and energy in powers of �1=2 to give

�H ¼ �H1 þ �1=2 �H�1 þ �
X1

j¼0

ð�1=2Þj �Hj;

�ð �ri; �ijÞ ¼
X1

j¼0

ð�1=2Þj�j;

�E ¼ �E1 þ �1=2 �E�1 þ �
X1

j¼0

ð�1=2Þj �Ej;

(1)

where

�H 1 ¼ �E1; (2)

�H �1 ¼ �E2n�1 ¼ 0; (3)
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2
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The �y0 vectors refer to internal displacement coordi-
nates, �r0 and �0, with �0 the internal displacement angle
cosine between two particles; the F tensors involve deriva-
tives of the effective potential while G tensors involve
kinetic energy terms. The superprescripts on the F and G

tensors denotes the order in �1=2. The subprescripts denote
the rank of the tensors. The indices, �, run from 1 toNðN þ
1Þ=2.
The perturbation equations have been solved exactly for

N particles through first order [20–22] using an SN invari-
ant basis of tensor elements called binary invariants. These
tensors have rank R, dimension ½NðN þ 1Þ=2�R and are
composed of ½NðN þ 1Þ=2�R elements, either 1’s or 0’s
planted in the tensor so the tensor is invariant under the
N! operations of SN . The set of binary invariants span the
tensor space at each order in the series and thus form a
complete basis at each order. Each binary invariant can be
represented by an unlabeled multiloop graph (with no
unattached vertices). This facilitates the enumeration and
determination of this tensor basis [20].
For example, the graphs needed at zeroth and first order

for the kinetic energy terms are:

(6)

(7)

(8)

(9)

grouped according to the number of straight edges (�) and
loop edges (r). Each of the above graphs denotes a binary
invariant. Explicit expressions for these binary invariants
may be found in an EPAPS document [20]. Proof that the
binary invariants are a complete basis at each order can be
found in Ref. [21].
Since the Hamiltonian, �H0, of the lowest-order wave

function has the form of an [NðN þ 1Þ=2]-dimensional
coupled harmonic oscillator, it may be solved by trans-
forming to normal modes using the FG method familiar
from quantum chemistry [23]. The normal modes trans-
form under irreducible representations (irreps.) of SN , and
thus the frequencies are highly degenerate. For a confined
system of N identical bosons, there are just five distinct
frequencies and five types of normal modes which will
describe the dominant motions if higher-order terms are
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not too large. There are two one-dimensional ½N� irreps.
denoted by 0þ, 0�, two N � 1 dimensional [N � 1, 1]
irreps. denoted by 1þ, 1�, and one NðN � 3Þ=2 dimen-
sional [N � 2, 2] irrep denoted by 2.

The higher-order terms in the series are derived using
this normal mode basis, q0. Writing the many-body wave
function, � as

�ðq0Þ ¼ ð1þ �1=2�̂1 þ ��̂2 þ �3=2�̂3 þOð�2ÞÞ�0ðq0Þ;
(10)

where �0 is the zeroth-order state, then �̂1 satisfies

½�̂1; �H0��0 ¼ �H1�0: (11)

After applying the linear transformation to normal
modes to the higher-order terms in the expansion of �H in
Eq. (1), each of the higher-order terms, �Hj, is a polynomial

in the normal modes and their derivatives. DefiningGV and
FV to be the G and F tensors in the normal coordinate
basis, the first-order Hamiltonian is

�H1 ¼ � 1

2
½ð1Þ3GV��1;�2;�3

�q0�1
@ �q0�2

@ �q0�3
� 1

2
½ð1Þ1GV��@ �q0�

þ 1

3!
½ð1Þ3FV��1;�2;�3

�q0�1
�q0�2

�q0�3
þ ½ð1Þ1FV�� �q0�: (12)

To solve Eq. (11), we note that since �0ðq0Þ is a Gaussian,
the derivatives in �H1 and �H0 ‘‘bring down’’ normal coor-
dinates from the exponent so that �H1 effectively becomes a
third-order polynomial of only odd powers in q0.
Therefore, the first-order many-body wave function is
obtained by multiplying the lowest-order wave function

by �̂1, a polynomial in q0: �1ðq0Þ ¼ ð1þ �1=2�̂1Þ�0ðq0Þ.
Exponential growth with order.—Although the number

of basis elements does not scale with N, it does grow with
increasing order. This growth is a measure of the complex-
ity of the problem. To measure this growth, we need to
determine the number of binary invariants as a function of
order. Since binary invariants can be represented by
graphs, determining the number of binary invariants is
equivalent to enumerating the number of unlabeled multi-
loop graphs that have no unattached vertices (i.e., vertices
that do not connect to an edge). While it is not very difficult
to determine the number of such graphs at zeroth order
(seven graphs) or at first order (25 graphs) by manually
drawing possible graphs and throwing out any new candi-
dates that are isomorphic to previous graphs, this task

becomes challenging even at second order where there
are 79 new graphs.
Research in graphical enumeration has derived generat-

ing functions for general graphs on p points with q edges
[24–26]. These studies include graphs with isolated verti-
ces that do not correspond to our binary invariants. At a
given order, j, the maximum rank, q, of theF andG tensors
is q ¼ jþ 2 corresponding to graphs with jþ 2 straight or
loop edges. The number of vertices can run from 1 to 2q as
can be confirmed for the graphs in Eq. (9). Thus, at each
order j, we need to count the number of unlabeled multi-
loop graphs with q ¼ jþ 2 edges and p ¼ 1; 2; . . . ; 2q
attached vertices. A little thought will demonstrate that
the number of ways that q lines can be distributed among
p unlabeled vertices if p � 2q and unattached vertices are
allowed (i.e., the graphs of Fulling et al., Ref. [24].) is the
same as the sum of graphs with q edges and p vertices as p
runs from 1 to 2q with no unattached vertices (our case).
For example, consider the case of one edge and four
vertices (p ¼ 4, q ¼ 1). There are two graphs to consider:

and the same number of one-edge graphs in

Eq. (8), which includes all graphs with no isolated vertices
for one edge (q ¼ 1) and one vertex (p ¼ 1) plus the
graphs for one edge and two vertices. Thus, we require p �
2q and choose p ¼ 2q since Fulling’s algorithm is quicker
to execute when p ¼ 2q. The resulting data are shown in
the Table I. When we consider a log plot of
the data in Table I, see Fig. 1, the data lie almost exactly
along a straight line. A least-squares fit gives: logðNGÞ ¼
1:221 85q� 0:518 622, with a residual of only 1:666 95�
10�4. We conclude that the number of binary invariants
scales exponentially with the rank of the tensor implying
an exponential scaling with the order of the pertubation
series. Thus although we are able to handle arbitrarily
large-N systems, we are limited in the order to which we
can develop the series. We hit an ‘‘exponential complexity
wall’’ with order. If the slope for logðNGÞ were small, then
we could develop the series solution to large order, but
since the slope is of order unity, deriving low orders is the
only practical proposition.
Conclusions.—Without approximations, the required

computational resources to effectively solve the quantum
N-body problem, either fermions or bosons, scales expo-
nentially with N [5], limiting essentially exact solutions to
systems with surprisingly low N [6]. Indeed, it has been
shown recently, in the worst case scenarios, the quantum

TABLE I. The number of graphs ð¼ number of binary invariantsÞ vs the number of edges
(¼rank of tensor).

q (¼rank of tensor) Number of Graphs, NG (¼number of binary invariants)

1 2

2 7

3 23

4 79
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N-body problem is unlikely to have efficient algorithms for
solution even on quantum computers [1–3].

The use of powerful analytic tools such as the group
theory of the symmetric group and graphical techniques to
tackle the quantum N-body problem is a logical step to
take whether numerical resources are sufficient or not.
Transferring numerical effort to analytic effort will pay
off in stability, efficiency, and in physical intuition.

While the exponential wall will always yield to suffi-
cient symmetry, real quantum systems, of course, do not in
general possess enough symmetry to make a big differ-
ence. Our method forces maximal symmetry by using a
perturbation series that is invariant under N! operations of
the SN group. The SN group does the ‘‘heavy lifting’’ to
allow a direct transformation from microscopic two-body
interactions to the macroscopic motions of the normal
modes regardless of the strength of the interaction. The
rearrangement of the exponential wall described in this
paper opens up the possibility of exact analytic solutions
for large N systems through low order and thus could be an
important route for obtaining an understanding of the
microscopic basis for the behavior of large N systems.

We gratefully acknowledge continued support from
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FIG. 1 (color online). log (number of graphs) vs number of
edges � logðnumber of binary invariantsÞ vs rank of tensor.
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