
Vertex Dynamics in Finite Two-Dimensional Square Spin Ices

Zoe Budrikis,1,2 Paolo Politi,2,3 and R. L. Stamps1

1School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia
2Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy

3INFN Sezione di Firenze, via G. Sansone 1, 50019 Sesto Fiorentino, Italy
(Received 14 April 2010; published 28 June 2010; corrected 3 August 2010)

Local magnetic ordering in artificial spin ices is discussed from the point of view of how geometrical

frustration controls dynamics and the approach to steady state. We discuss the possibility of using a

particle picture based on vertex configurations to interpret the time evolution of magnetic configurations.

Analysis of possible vertex processes allows us to anticipate different behaviors for open and closed edges

and the existence of different field regimes. Numerical simulations confirm these results and also

demonstrate the importance of correlations and long-range interactions in understanding particle popu-

lation evolution. We also show that a mean-field model of vertex dynamics gives important insights into

finite size effects.

DOI: 10.1103/PhysRevLett.105.017201 PACS numbers: 75.50.Lk, 75.10.Kt, 75.75.�c, 75.78.�n

Introduction.—Spin ices are geometrically frustrated
magnetic systems, where interaction energies are mini-
mized by local arrangements of spins resembling the ice
rule for the ground state of solid water, i.e., two-in, two-out
spin configurations [1,2]. Spin ices display several inter-
esting features including zero point entropy [3], spin freez-
ing, and hysteresis [4]. The role of long-range interactions
in three-dimensional spin ices is also interesting, as the
long-range dipolar interactions between spins lead to a
state that can be described using the short-range ice rules
[5].

There is now a growing interest in two-dimensional
artificial spin ices, which consist of finite arrays of elon-
gated magnetic dots whose magnetizations can be well
approximated by Ising spins [6,7]. Artificial spin ices
have several differences with their three-dimensional
counterparts. For example, their geometry can be con-
trolled experimentally [8] and their magnetization configu-
rations can be imaged directly using scanning probe
techniques. Furthermore, artificial spin ices allow the study
of frustration at room temperature because of the thermal
stability of the relatively large dots. In fact, the anisotropy
barrier preventing the macrospin associated with a dot
from flipping is much larger than room temperature, so
dynamics can only be induced by applying a magnetic field
~H ¼ h�̂. We can expect that a small h does not affect the
configuration, while a large h dominates dipolar interac-
tions and spins simply follow the field [9]. Interesting
collective effects arise when jh� hcj � g, where hc is
the minimum field required to flip an isolated spin and g
is of the order of the dipolar interactions.

Until now, studies of artificial spin ices have focused on
the best procedures to attain low energy states [9] or the
properties of ‘‘final’’ states of demagnetization protocols
[10,11]. Very little is known about the time-dependent
dynamical evolution of spin ices in response to a magnetic

field, either experimentally or theoretically. In this Letter
we show that the time evolution of square artificial spin
ices can be described in terms of vertex configurations, and
that these interact in a way that in principle can be pre-
dicted and understood.
We do this by first introducing the essentials of a vertex

population model, which predicts some general features of
the dynamics. We show that a mean-field approximation
allows quantitative evaluation of important array size ef-
fects. However, correlations, the long-range part of dipolar
interactions, and edge effects can be nonnegligible and are
studied carefully using numerical simulations. In all of our
models, a rotating field of constant strength is applied to
finite arrays and we discuss how this leads to effective
demagnetization if h is correctly tuned.
Vertex population model.—In this Letter, we consider

only square artificial spin ices. Unlike the spins on the
tetrahedra of three-dimensional ices, the four spins around
a vertex of a square ice are not equivalent [Fig. 1(a)]. As in
Ref. [6], we classify the vertex configurations into four
types of increasing energy Ei (i ¼ 1; . . . ; 4) [Fig. 1(b)].
Type 1 and 2 vertices obey the two-in, two-out ice rule
but E1 <E2, because type 1 vertices minimize the energy
of stronger interactions.
The arrays can have open or closed edges [Figs. 1(c) and

1(d)]. Unlike in the open edge case, the configuration of an
array with closed edges cannot be fully described by the
configuration of its four-island vertices and three types of
three-island edge vertices must be introduced [Fig. 1(e)].
We now discuss the essentials of a vertex population

model for open edge arrays. After sample saturation in the
x̂ direction, a field of constant modulus h is applied and
rotated anticlockwise [Fig. 1(f)]. The system evolves via
single spin flips rather than so-called ‘‘loop moves’’ [12] so
that ice-rule-disobeying vertices can arise, a necessary
condition to describe dynamics. Let us suppose that the
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condition for flipping a spin ~si is� ~Htot
i � ~si > hc. ~Htot

i is the

total field acting on ~si, and is the sum of the external field ~H

and the dipolar field ~Hdip
i due to all other spins. We work in

reduced units where the energy of a nearest-neighbor pair
of spins is �3=2, and set hc ¼ 10, which is larger than the
largest possible dipolar field ~g acting on any island [13]. As
long as hc > ~g, results with different hc are simply shifted
relative to one another.

We introduce the notation that refers to a type i

vertex, and ni the population fraction of type i vertices.
In the bulk of the array, topological and energetic con-
straints allow the following two-vertex processes:

as shown in Fig. 1(g). Because of the energetic constraints,
type 4 vertices cannot be created from an initial polarized
state, type 1 vertices cannot be destroyed, and the process

cannot occur. The impossibility of destroy-

ing type 1 vertices and the impossibility of the process
give rise to an important phenomenon, trap-

ping, in which a type 3 vertex or a region of type 2 vertices
is frozen if surrounded by type 1 vertices. The existence of
trapping contributes to a slowing of dynamics at long
times. Type 3 vertices can only be nucleated and expelled
at the array edges, via the processes and ,

also shown in Fig. 1(g).

Starting from an initial saturated configuration, the dy-
namics begin with the nucleation of type 3 vertices at the
array edges perpendicular to the original polarization, via
the process . Then type 3 vertices can propagate

via two processes, and , the

former requiring a smaller applied field than the latter.
In the absence of long-range interactions, there would be

four field regimes: a very low-field regime where the field
is too small to effect a response from the spins, a very high-
field regime in which the magnetization tracks the applied
field, and two nontrivial intermediate regimes. The differ-
ence between the two intermediate regimes is that in the
first (the ‘‘low-field’’ regime), type 3 vertices can only
propagate via the process whereas in the

second (the ‘‘high-field’’ regime), both type 3 propagation
processes can occur. Long-range interactions modify this
picture somewhat because the dipolar fields acting on spins
in different locations are not equal, causing a spread in the
applied field strength required for vertex processes. This
leads to a more gradual crossover between the low and
high-field regimes.
A full description of vertex dynamics should take into

account correlations and long-range interactions, but if
vertices are sufficiently well mixed then these should
become negligible on average and a mean-field description
based on short-range interactions should hold. We propose
a set of ordinary differential equations to describe an open
edge array under these assumptions. Comparison with
numerical simulations that take into account the full
long-range interactions (see below) shows that the mean-
field approach describes the crossover and high-field re-
gimes relatively well.
The equations for the nið�Þ are
_n1 ¼ 4�13ð1�N =2Þn2Fn3F þ 2ð2�11 þ �12Þ

� ð1�N =2Þn23F þ �e
31N n3F; (1a)

_n2F ¼ �4�13ð1�N =2Þn2Fn3F þ 2ð�12 þ 2�22Þ
� ð1�N =2Þn23F � �e

23N n2F

þ �e
32N n3F � �Tð1�N Þn2Fn41; (1b)

_n3F ¼ �4ð�11 þ �12 þ �22Þð1�N =2Þn23F
þ �e

23N n2F � ð�e
31 þ �e

32ÞN n3F

� �Tð1�N Þn3Fn31; (1c)

_niT ¼ �Tð1�N ÞniFn41 ði ¼ 2; 3Þ; (1d)

where _ni ¼ dni=d�, N is the fraction of vertices at the
array edge, and subscripts T and F denote vertices that are
trapped and vertices that are free to be involved in dynam-
ics, respectively. The reaction rates � depend on the total
field acting on the flipping spin. The dipolar part is calcu-
lated in the approximation that only spins belonging to the
flipping spin’s two vertices contribute to it.
We integrate the system (1) with initial conditions

n2Fð0Þ ¼ 1, nið0Þ ¼ 0 for all other i, for h ¼ 10. In
Fig. 2, we see that size effects are clearly significant for

FIG. 1 (color online). The geometry of square artificial spin
ice. (a) The nearest- and next-nearest-neighbor interactions at
each four-island vertex of the array; (b) examples of each type of
four-island vertex; (c) ‘‘open’’ edge geometry which can be
described fully by the four-island vertex configuration;
(d) ‘‘closed’’ edge geometry with vertices containing three
islands; (e) examples of each type of three-island vertex;
(f) the magnitude and direction of the applied magnetic field;
(g) the single spin flip one- and two-vertex processes that are
energetically and topologically allowed.
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population levels: as the number of verticesN increases the
final type 1 and 3 populations decrease logarithmically
slowly (see inset), the number of rotations required to reach
a steady state increases, and the transient peak in n3 dis-
appears. These effects can all be attributed to the decrease
in N with N, because for large arrays with relatively few
edge vertices, the rate of type 3 vertex creation will be
smaller, resulting in reduced rates for processes that create
type 1 vertices.

Considerations for closed edge arrays can be made in
direct analogy to those presented above for open edge
arrays. The resulting equations are more complicated due
to the additional populations introduced by the edge ge-
ometry, as noted earlier, but the resulting behaviors for n1
and n3 turn out to be very similar to those shown in Fig. 2.
This similarity signals a failure of our mean-field
approximation.

Correlations and long-range dipolar effects.—The pri-
mary shortcoming of our mean-field population dynamics
picture is the neglect of spin correlations, but the neglect of
long-range dipolar interactions is also important. We dem-
onstrate this using numerical simulations which do not
suffer from these two shortcomings. At each step of a
simulation, all spins are accessed in a random order, and
flipped according to the hc rule described above. The field
is held constant until no further spin flips can occur and
then rotated by d� ¼ 0:01. The initial configuration is
saturated in the x̂ direction. Example animated time evo-

lutions for open and closed arrays can be found in the
supplementary materials [14].
In Fig. 3 we plot hn1ð�Þi and hn3ð�Þi for an open edge

array. The inset shows the dependence of the final type 1
population fraction on the field strength h. We find four
field regimes, as expected by our general considerations of
vertex dynamics. The lowest and highest regimes are triv-
ial: for h � 9, no spin flips can occur, while for h � 11
spins simply follow the field. In the interval 9 � h � 11,
the low-field regime (red dotted lines) and high-field re-
gime (solid black lines) are shown, together with a cross-
over between the two (dashed blue lines). It is worth
stressing we are able to attain hn1i values of up to 90% if
the field is slightly larger than the lowest field allowing
dynamics.
We performed similar simulations for closed edge ar-

rays. As an example of the results, Fig. 4 shows the
evolution of mean n1 and n3 values for an applied field h ¼
11:25, with an inset showing the dependence of the final
hn1i on h. These results are quite different from those
obtained for open edge array for several reasons.
The same two-vertex processes occur in the bulk of open

and closed arrays and likewise type 3 nucleation and ex-
pulsion occurs at the edges of closed arrays. However, in
closed edge arrays, type 3 nucleation and expulsion can

FIG. 2 (color online). (a) Type 1 and (b) type 3 population
fractions for dynamics given by Eqs. (1), for a field h ¼ 10 and
for arrays of increasing size. Inset: Final type 1 population
fraction as a function of array size N.

FIG. 3 (color online). (a) Type 1 and (b) type 3 mean vertex
populations from numerical simulations, for h ¼ 10:75 (solid
black lines), 10 (blue dashed lines), and 9.25 (red dotted lines),
for an open edge array of 400 islands. Averages are over 100 runs
of the simulation. The inset of (a) shows the dependence of the
final type 1 population on h, with the two field regimes of
interest: low fields (9 � h � 9:5) and high fields (10 � h � 11).
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only occur when the neighboring 3-island edge vertex is of
type 2e, because the fields required when it is type 1e are
prohibitively large. Thus, creation of type 1e vertices
reduces the number of nucleation and expulsion sites and
slows the dynamics.

Moreover, the fields required to nucleate type 3 vertices
in the closed edge array are larger than the field required
for the process, so this process is always able

to occur. As a result, there is only one interesting field
regime, for 10:5 � h � 11:5. The field required for initial
type 3 nucleation is sufficiently large that a relatively high
proportion of nucleated type 3 vertices are driven across
the array in the process and expelled at the

opposite edge. This leads to oscillations in hn3i.
Conclusions.—We have demonstrated in this Letter that

vertex dynamics can be formalized via population dynam-
ics equations. We have done this within the limitations of a
short-range interaction mean-field approximation, and pro-
vided insights into array size dependence. Most signifi-
cantly, we find that the final number of type 1 vertices
decreases very slowly with increasing array size.

It may be possible to improve the mean-field treatment
by introducing spatially dependent densities for the popu-
lations and estimating effects of spin correlations on tran-
sition rates, but that is beyond the scope of the present
work. However, we note that a mean-field approximation
can provide an accurate description in some circumstances.
The reason is the following. When evolution begins with
nucleation of type 3 vertices at the array edge, numerically
we find that different edges produce very different results.
Instead if the initial configuration is random rather than
saturated, many defects are included and edge effects

become negligible. Thus a random initial configuration is
described well in a mean-field approach.
Based on results from our models, we can also make a

general observation of importance for the question of
demagnetization protocol. We find that a simple constant
h protocol may be as good as more elaborate protocols, if h
is correctly tuned. We have also studied the system using
some protocols that change both � and h. The best demag-
netization appears when h is varied such that the system
spends a long time with h near the values that give the
maximum mean n1 in the inset of Fig. 3(a).
Finally, we also note that real islands may be modeled

more accurately with Stoner-Wohlfarth switching. We
have examined this and find that we obtain qualitatively
similar results for critical-field and Stoner-Wohlfarth
switching, but critical-field switching is more amenable
to a simple theoretical description.
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