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We discuss an open driven-dissipative many-body system, in which the competition of unitary

Hamiltonian and dissipative Liouvillian dynamics leads to a nonequilibrium phase transition. It shares

features of a quantum phase transition in that it is interaction driven, and of a classical phase transition, in

that the ordered phase is continuously connected to a thermal state. We characterize the phase diagram and

the critical behavior at the phase transition approached as a function of time. We find a novel fluctuation

induced dynamical instability, which occurs at long wavelength as a consequence of a subtle dissipative

renormalization effect on the speed of sound.
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Experiments with cold atoms provide a unique setting to
study nonequilibrium phenomena and dynamics, both in
closed systems but also for (driven) open quantum dynam-
ics. This relies on the ability to control the many-body
dynamics and to prepare initial states far from the ground
state. For closed systems we have seen a plethora of studies
of quench dynamics [1,2], thermalization [3,4], and trans-
port [5], and also dynamical studies of crossing in a finite
time quantum critical points in the spirit of the Kibble-
Zurek mechanism [6,7]. On the other hand, systems of cold
atoms can be driven by external (light) fields and coupled
to dissipative baths, thus realizing driven open quantum
systems. As familiar, e.g., from the quantum optics of the
laser, the steady state of such a system (if it exists) is
characterized by a dynamical equilibrium between pump-
ing and dissipation, and can exhibit various nonequilibrium
phases and phase transitions [8,9] as function of external
control parameters. In the present work we will study such
scenarios for quantum degenerate gases. Our emphasis is
on understanding quantum phases and dynamical phase
transitions of cold atoms as an interacting many-body
condensed matter system far from equilibrium. In particu-
lar, we will establish several observable aspects which are
uniquely tied to the nonequilibrium nature of the problem.

For a many-body system in thermodynamic equilibrium
the competition of two noncommuting parts of a micro-
scopic Hamiltonian H¼H1þgH2 manifests itself as a
quantum phase transition (QPT), if the ground states for
g � gc and g � gc have different symmetries [10]. For
temperature T ¼ 0 the critical value gc then separates two
distinct quantum phases, while for finite temperature this
defines a quantum critical region around gc in a T vs g
phase diagram. A seminal example in the context of cold
atoms in optical lattices is the superfluid-Mott insulator
transition in the Bose-Hubbard (BH) model, with
Hamiltonian

H ¼ �J
X
h‘;‘0i

by‘ b‘0 ��
X
‘

n̂‘ þ 1

2
U
X
‘

n̂‘ðn̂‘ � 1Þ; (1)

with b‘ bosonic operators annihilating a particle on site ‘,

n̂‘ ¼ by‘ b‘ number operators, J the hopping amplitude,

and U the onsite interaction strength. For a given chemical
potential �, chosen to fix a mean particle density n, the
critical coupling strength gc ¼ ðU=JzÞc separates a super-
fluid Jz � U from a Mott insulator regime Jz � U (z the
lattice coordination number).
In contrast, we consider a nonequilibrium situation in

which the competition of microscopic quantum mechani-
cal operators results from Hamiltonian and dissipative
dynamics. We study a cold atom evolution described by a
master equation for the density operator

@t� ¼ �i½H;�� þL½��;
L½�� ¼ 1

2
�
X
h‘;‘0i

ð2c‘‘0�cy‘‘0 � cy
‘‘0c‘‘0�� �cy

‘‘0c‘‘0 Þ;
(2)

where c‘‘0 ¼ ðby‘ þ by
‘0 Þðb‘ � b‘0 Þ are ‘‘jump operators’’

acting on adjacent sites h‘; ‘0i. The energy scale � is the
dissipative rate. As shown in [11], such dissipative reser-
voir couplings are obtained in a setup where laser driven
atoms are coupled to a phonon bath provided by a second
condensate. ForU ¼ 0 this dissipation drives the system to
a dynamical equilibrium independent of the initial state
[11] given by the pure many-body state �ss ¼ jBECihBECj
representing a Bose Einstein condensate. From an atomic
physics point of view this is remarkable, as typical deco-
herence mechanisms, such as spontaneous emission, will
destroy long range order, whereas here the bath coupling is
engineered to suppress phase fluctuations. This can be
understood in momentum space, where the annihilation
part of c‘‘0 reads

P
�ð1� expðiq�aÞÞbq, with � the recip-

rocal lattice directions and a the lattice constant. c‘‘0 thus
feature a (unique) dissipative zero mode at q ¼ 0—a
many-body ‘‘dark state’’ jBECi � byNq¼0jvaci decoupled

from the bath, into which the system is driven for long
wait times. The dynamics behind Eq. (3) can be understood
as a ‘‘dark state laser cooling’’ [12] into a condensate.
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Turning on an interaction measured by u ¼ U=ð4�zÞ
provides a Hamiltonian term in (3) which is incompatible
with kinetic energy and dissipation. This competition leads
to novel dynamical equilibria which cannot be understood
as thermodynamic equilibrium states. They are summa-
rized in the steady state phase diagram in Fig. 1. Most
prominently, it features a strong coupling phase transition
as a function of u. The transition shares features of a QPT
in that it is interaction driven, and of a classical phase
transition in that the ordered phase terminates in a mixed
state. This contrasts equilibriumQPTs, in which the system
remains in a pure zero temperature state across the
transition.

We show the existence of a novel dynamical instability
that covers an extensive domain of the phase diagram.
Again, this is a nonequilibrium effect, since in equilibrium,
finite momentum excitations carry positive kinetic energy
ruling out dynamical instabilities. It persists at arbitrarily
weak interaction parametersUn. This is in marked contrast
to the ‘‘classical’’ dynamical instabilities of condensates in
boosted lattices [13,14] or in exciton-polariton systems
[15], which are triggered by external parameter tuning
beyond finite critical values.

Our scenario shares analogies with the well-known dis-
sipation induced phase transition to a superconductor in
Josephson junction arrays [16], in which similarly phase
fluctuations are suppressed via the coupling to a dissipative
bath. We stress, however, that the latter system is in global
thermal equilibrium, thus not displaying the nonequilib-
rium aspects highlighted here.

Nonlinear mean field master equation.—To solve the
master equation we developed a generalized Gutzwiller
approach, expected to hold in sufficiently high spatial
dimension, which allows us to include mixed states. This
is implemented by a product ansatz � ¼ N

‘�‘, with the
reduced local density operators �‘ ¼ Tr�‘�. The equation

of motion (EOM) reads

@t�‘ ¼ �i½h‘; �‘� þL‘½�‘�; (3)

with the local Hamiltonian h‘ ¼ �J
P

h‘0j‘iðhb‘0 iby‘ þ
hby

‘0 ib‘Þ ��n̂‘ þ 1
2Un̂‘ðn̂‘ � 1Þ and a Liouvillian of the

form L‘½�‘�¼�
P

h‘0j‘i
P

4
r;s¼1�

rs
‘0 ½2Ar

‘�‘A
sy
‘ �Asy

‘ Ar
‘�‘�

�‘A
sy
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‘�. The Liouvillian is constructed with the vector

of operators A‘ ¼ ð1; by‘ ; b‘; n̂‘Þ and the matrix of corre-

lation functions �r;s
‘ ¼ �r�sTr‘A

ð5�sÞy
‘ Að5�rÞ

‘ �‘, for � ¼
ð�1;�1; 1; 1Þ. The �-dependent correlation matrix makes
the master equation nonlinear in �‘.
Dynamical quantum phase transition.—At U ¼ 0 a

steady state solution of Eq. (3) is given by the pure state

�ðcÞ
‘ ¼ j�ih�j for any ‘ together with the choice � ¼

�Jz, where j�i is a coherent state of parameter nei� for
any phase � [17]. In order to understand the effect of a
finite interaction U, we apply the rotating-frame transfor-

mation V̂ðUÞ ¼ exp½iUn̂‘ðn̂‘ � 1Þt� to Eq. (3). This re-
moves the interaction term from the unitary evolution,

but the annihilation operators become V̂b‘V̂
�1 ¼P

m expðimUtÞjmi‘hmjb‘. The effect of a finite U is thus
to rotate the phase of each Fock state differently, leading to

dephasing of the coherent state �ðcÞ
‘ . Hence, for strong

enough U, off-diagonal order is suppressed completely
and the density matrix becomes diagonal. In this case
Eq. (3) reduces precisely to the master equation for a
system of bosons coupled to a thermal reservoir with
occupation n [17], whose solution is a mixed diagonal

thermal state �ðtÞ. Interestingly, this state is thermal-like;
however, the role of the thermal bath is played by the
system itself.
We substantiate the discussion above with the numerical

integration of the EOM (3) for a homogeneous system (we
drop the index ‘). The system is initially in the coherent
state and the condensate fraction jc j2=n, where c ¼ hbi,
decreases in time depending on the value of the interaction
strength U. The result is a continuous transition from the

coherent state �ðcÞ to the thermal state �ðtÞ, shown in Fig. 2.
The boundary between the thermal and the condensed
phase with varying J, n is shown in Fig. 1.
The transition is a smooth crossover for any finite time,

but for t ! 1 a sharp nonanalytic point indicating a sec-
ond order phase transition develops. In the universal vi-
cinity of the critical point, 1=�t may be viewed as an
irrelevant coupling in the sense of the renormalization
group. We may use this attractive irrelevant direction to
extract the critical exponent� for the order parameter from
the scaling solution jc ðtÞj / ð�tÞ��. In the inset of Fig. 2
we plot �ðtÞ ¼ d logðc Þ=d logð1=tÞ and read off the criti-
cal exponent � ¼ 0:5 in the scaling regime, which is an
expected result given the mean field nature of the
Gutzwiller ansatz. We emphasize that following the relaxa-
tion dynamics of the condensate fraction for critical system
parameters gives an experimental handle for the measure-
ment of �.

FIG. 1 (color online). Nonequilibrium phase diagram for the
model in Eq. (3). The solid lines indicate the border of the
dynamical quantum phase transition from a condensed to a
homogeneous thermal steady state. The dashed lines delimit
the region where the condensed state is stable. The black
(blue) lines are the numerical results corresponding to average
density n ¼ 1:0 (n ¼ 0:1). The red line corresponds to the
analytical results for n ¼ 0:1.
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Low-density limit.—In the low-density limit n � 1 we
obtain an analytical understanding of the time evolution
based on the observation that the six correlation functions

c , hb2‘i, hby‘ b2‘i, and complex conjugates, form a closed

(nonlinear) subset which decouples from the a priori infi-
nite hierarchy of normal ordered correlation functions

hbyn‘ bm‘ i. We first use this result to obtain analytically the

critical exponent � discussed above. For a homogeneous
system with J ¼ 0 the EOMs read

@tc ¼ i�c þ ð�iUþ 4�Þhbyb2i � 4�c �hb2i;
@thbyb2i ¼ 8n�c þ ð�iUþ i�� 8�Þhbyb2i;

@thb2i ¼ ð�iUþ 2i�� 8�Þhb2i þ 8�c 2:

(4)

The structure of the equations suggest that hb2i decays
much faster than the other correlations for U ¼ Uc, so
that we may take @thb2i ¼ 0 and hence hb2i / c 2. At the
critical point the two linear contributions to @tc vanish due
to the zero mass eigenvalue at criticality and @tc /
�c 2c �. It follows that jc j ’ 1=ð4 ffiffiffiffiffi

�t
p Þ in agreement

with the numerical result in Fig. 2.
To study the interaction induced depletion of the con-

densate fraction, it is convenient to use ‘‘connected’’ cor-
relation functions, built with the fluctuation operator
�b ¼ b� c 0. Here c 0 is the constant value of the order
parameter in the steady state, and h�bi ¼ 0. From (4) we
obtain a closed linear system of EOMs, if c 0 is considered
as a parameter, determined self-consistently from the iden-
tity n ¼ h�by�bi þ jc 0j2. The value of the chemical po-
tential is fixed to remove the driving terms in the equations
for h�bi, leading to � ¼ nU. This is an equilibrium con-
dition similar to the vanishing of the mass of the Goldstone
mode in a thermodynamic equilibrium system with spon-
taneous symmetry breaking. The solution of the equations
in steady state yields the condensate fraction

jc 0j2
n

¼1� 2u2ð1þðjþuÞ2Þ
1þu2þjð8uþ6jð1þ2u2Þþ24j2uþ8j3Þ ;

(5)

with dimensionless variable j ¼ J=ð4�Þ. Equation (5) re-
duces to the simple quadratic expression 1� 2u2 in the

limit of zero hopping, with the critical point UcðJ ¼ 0Þ ¼
4�z=

ffiffiffi
2

p
. The phase boundary, obtained by setting c 0 ¼ 0

in Eq. (5), reads uc ¼ jþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ 2j2

p
. Figure 1 shows that

these compact analytical results (solid red line) match the
full numerics for small densities (solid blue line), and also
explain the qualitative features of the phase boundary for
large densities. We note the absence of distinct commen-
surability effects, e.g., n ¼ 1, tied to the fact that the
interaction also plays the role of heating.
Dynamical instability.—Numerically integrating the full

EOM (3) with site dependence (in one dimension for
simplicity), we observe a dynamical instability, manifest-
ing itself at late times in a long wavelength density wave
with growing amplitude. Numerical linearization of Eq. (3)
around the homogeneous steady state allows us to draw a
phase border for the unstable phase (see Fig. 1). The
instability is cured by the increase of hopping J, which is
associated to an operator compatible with dissipation �.
Furthermore, we note that the thermal state is always
dynamically stable against long wavelength perturbations.
The origin of this instability is intriguing and we discuss

it analytically within the low-density limit introduced
above. We linearize in time the EOM (3), writing the ge-

neric connected correlation function as hÔ‘iðtÞ ¼ hÔ‘i0 þ
�hÔ‘iðtÞ, where hÔ‘i0 is evaluated on the homogeneous
steady state of the system. The EOM for the time- and
space-dependent fluctuations is then Fourier transformed,
resulting in a 7� 7 matrix evolution equation @t��q ¼
M��q for the correlation functions �q¼ðh�biq;
h�byiq;h�by�biq;h�b2iq;h�by2iq;h�by�b2iq;h�by2�biqÞ.
We note that the fluctuation �h�biq (�h�byiq) coincides
with the fluctuation of the order parameter �c q (�c

��q).M

can be easily diagonalized numerically revealing the spec-
trum in Fig. 3 (we display only the real part 	 correspond-
ing to damping). The lowest-lying branch gives 	q < 0 in

an interval around q ¼ 0. This means that the correlation
functions grow exponentially /e	t in a range of low mo-
menta, resulting in a long wavelength density wave.
Because of the scale separation for q ! 0 inM apparent

from Fig. 3, we can apply second order perturbation theory
twice in a row to integrate out the fast modes 	 / � and
/�n. We then obtain an effective low energy EOM for the
fluctuations of the order parameter (�c q, �c

��q), gov-

erned by a 2� 2 matrix

Meff ¼ Unþ 
q � i�q Unþ 9un�q

�Un� 9un�q �Un� 
q � i�q

� �
; (6)

where 
q ¼ Jq2 represents the kinetic contribution and

�q ¼ 2ð2nþ 1Þ�q2 is the bare dissipative spectrum. The

FIG. 2. Stroboscopic plot of the time evolution of the conden-
sate fraction as a function of the interaction strength U, for J ¼
1:5� and n ¼ 1. For large times it converges to the lower thick
solid line. The critical point is Uc ’ 4:5�z. Inset: Near critical
evolution for J ¼ 0, n ¼ 1, and U & Uc. The early exponential
decay (�) is followed by a scaling regime (�) with exponent
� ’ 0:5. The final exponential runaway (þ) is due to a small
deviation from the critical point.
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form of the EOM reflects the structure of the spatial
fluctuations which are included in our approach, that may
be understood as scattering off the mean fields in opposite
directions. We note that a naive a priori restriction to the
2� 2 set corresponding to the subset ð�c ‘; �c

�
‘Þwould be

inconsistent, for example, destroying the dark state prop-
erty present in the correct solutionMeff . On the other hand,
factorizing the correlation functions in the Liouvillian L‘

yields a dissipative Gross-Pitaevski equation but its linea-
rization in time produces a matrix Meff without the fluc-
tuation induced term �u and fails to describe the
dynamical instability. Thus, to correctly capture the phys-
ics of the instability at q ! 0, the onsite quantum correla-
tions renormalizing Meff have to be taken into account.

We can make the nature of the instability even
more transparent calculating the lowest eigenvalue of
Meff , 	q ’ icjqj þ �q, with speed of sound c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Un½J � 9Un=ð2zÞ�p

. If the hopping amplitude is smaller
than the critical value Jc ¼ 9Un=ð2zÞ the speed of sound
turns imaginary and contributes to the dissipative real part
of 	q. The nonanalytic renormalization contribution �jqj
always dominates the bare quadratic piece for low mo-
menta, explaining the shape in the inset of Fig. 3 and
rendering the system unstable. The linear slope of the
stability border for small J and U is clearly visible in
Fig. 1. In summary, the origin of the instability is traced
back to a subtle interplay of short time quantum and long
wavelength classical fluctuations.

Conclusion.—The features found in the present model
are expected to be generic and representative for a whole
class of nonequilibrium models discussed recently in the
context of reservoir engineering and dissipative prepara-
tion of given long-range ordered entangled states of qubits
or spins on a lattice [18,19] and paired fermions [11,20].
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