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A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through

quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate

its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional

relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud.

This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann

methods, namely, computational efficiency and easy handling of complex geometries, to the context of

(mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic

outflows.
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We present the first (to the best of our knowledge) lattice
Boltzmann (LB) formulation for relativistic fluids. Our
procedure is based on two simple and yet apparently un-
pursued observations: (i) the kinetic formalism is naturally
covariant, hyperbolic, or conservative; (ii) being based on
construction on a finite-velocity scheme, standard lattice
Boltzmann methods [1,2] naturally feature relativisticlike
equations of state, whereby the sound speed cs is a sizable

fraction of the speed of light c. For many lattices, cs=c ¼
1=

ffiffiffi
3

p
, which is precisely the equation of state of a relativ-

istic ideal gas. Based on the above, we are led to propose
that, upon choosing the lattice speed cl � �x=�t� c, the
current LB mathematical framework should allow for rela-
tivistic extensions, which is indeed the case made in this
Letter. This spawns the exciting opportunity of carrying the
assets of LB over to the context of mildly relativistic fluids,
e.g., the quark-gluon plasma generated by recent experi-
ments on heavy ions and hadron jets [3–9], as well as
astrophysical flows, such as interstellar gas and supernova
remnants [10,11]. The relativistic lattice Boltzmann (RLB)
scheme is validated through quantitative comparison with
recent one-dimensional hydrodynamic simulations of rela-
tivistic shock-wave propagation in viscous quark-gluon
plasmas [12]. However, the same scheme can also be
applied to three-dimensional, large-scale relativistic fluid
problems, such as the impact of the shock wave generated
by, say, a supernova explosion, on a massive cloud, as
pictorially shown in Fig. 1.

The present RLB approach is, in principle, limited to

weakly relativistic problems, with j ~�j � 0:1. However, by
introducing artificial faster-than-light particles (numerical
‘‘tachyons’’), it is shown to produce quantitatively correct

results up to j ~�j � 0:6, corresponding to a Lorentz factor

� ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j ~�j2

q
� 1:4. Although still far from state-of-

the-art numerical methods for relativistic hydrodynamics
[13,14], the RLB might nevertheless offer a fairly inex-
pensive alternative to more sophisticated methods at mod-

erate values of j ~�j. In addition, since LB is recognizedly an
excellent solver for flows in complex geometries, like
porous media, it is plausible to expect that the present
RLB scheme may play a useful role for the simulation of
relativistic flows in nonidealized geometries.
We begin by considering the standard relativistic fluid

equations associated with the conservation of number of
particles and momentum energy, namely, @�T

�� ¼ 0,
where the energy-momentum tensor reads as follows
[15,16]: T�� ¼ P��� þ ð�þ PÞu�u� þ ���, � being
the energy density, P the hydrostatic pressure, and ���

the dissipative component of the stress-energy tensor,
to be specified later. The velocity 4-vector is defined by

FIG. 1 (color online). Relativistic shock wave, generated by a
�-ray burst or x-ray flash supernova explosion, impacting on a

massive interstellar cloud at j ~�j ¼ 0:5. Here the streamlines
represent the velocity field, and the colors the pressure. The
simulation was implemented on a grid size of 200� 100� 100
cells.
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u� ¼ ð�; � ~�Þ�, where ~� ¼ ~u=c is the velocity of the fluid

in units of the light speed and � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j ~�j2

q
. The

tensor ��� denotes the Minkowski metric. Additionally,

we define the particle 4-flowN� ¼ ð�n; n� ~�Þ�, with n the
number of particles per volume. Applying the conservation
rule to energy and momentum, @�T

�� ¼ 0, and to the

4-flow, @�N
� ¼ 0, we obtain the hydrodynamic equations.

Note that, in contrast to a nonrelativistic fluid, we have
separate conservation equations for particle number and
energy. To complete the set of equations, we need to define
a state equation that relates, at least, two of the three
quantities: n, P, and �.

The above hydrodynamic equations can be derived
as a macroscopic limit of the following relativistic
Boltzmann-Bhatnagar-Gross-Krook equation [15,16]:

@�ðp�fÞ ¼ feq�f
c	 , where p� ¼ ½EðpÞ; ~pc� is the particle

4-momentum with EðpÞ the relativistic energy as a func-
tion of the momentum modulus p ¼ j ~pj, feq a local rela-
tivistic equilibrium, and 	 the relaxation time. LB theory
for classical fluids shows that it may prove more conve-
nient to solve fluid problems by numerically integrating the
underlying kinetic equation rather than the macroscopic
fluid equations themselves. The main condition for this to
happen is that a sufficiently economic representation of the
velocity space degrees of freedom be available. Such a
representation is indeed provided by discrete lattices, in
which the particle velocity (momentum) is constrained to a
handful of constant discrete velocities, with sufficient sym-
metry to secure the fundamental conservations of fluid
flows, namely, mass-momentum-energy conservation as
well as rotational invariance.

In order to reproduce the relativistic hydrodynamic
equations, we propose a three-dimensional LB model
with a 19-speed cell configuration, as shown in Fig. 2.
We define two distribution functions fi and gi for each
velocity vector ~ci, where the index i labels the discrete
momenta within each cell. The hydrodynamic variables are
calculated by imposing the following macroscopic con-
straints: n� ¼ P18

i¼0 fi, ð�þ PÞ�2 � P ¼ P18
i¼0 gi, and

ð�þ PÞ�2 ~u ¼ P
18
i¼0 gi ~ci. From these equations, we have

to extract six physical quantities, n, ~u, �, and P, out of only
five equations. The problem is closed by choosing the
equation of state for ultrarelativistic fluids, � ¼ 3P.

The distribution functions evolve according to the
Bhatnagar-Gross-Krook-Boltzmann evolution equation

[17] (full details in a future extended publication),

fið ~xþ ~ci�t; tþ �tÞ � fið ~x; tÞ ¼ ��t

	
ðfi � feqi Þ; (1)

and

gið ~xþ ~ci�t; tþ �tÞ � gið ~x; tÞ ¼ ��t

	
ðgi � geqi Þ; (2)

where f
eq
i and g

eq
i are local equilibrium distribution func-

tions encoding ideal-hydrodynamics information. They
read as follows:

feqi�0 ¼ win�

�
1þ 3

ð ~ci � ~uÞ
c2l

�
; (3)

geqi>0¼3wi

�ð�þPÞ�2

c2l

�
ð ~ci � ~uÞþ3ð ~ci � ~uÞ2

2c2l
�j ~uj2

2

�
þ P

c2l

�
;

(4)

g
eq
i¼0 ¼ 3w0ð�þ PÞ�2

�
1� Pð2þ c2l Þ

ðPþ �Þ�2c2l
� 1

2

j ~uj2
c2l

�
: (5)

Here cl is the limiting velocity of the lattice, which relates
the cell size and the time step cl ¼ �x

�t , and we have

rescaled the velocity units such that the speed of light c ¼
1. The weights for this set of discrete speeds are defined by
w0 ¼ 1=3 for the rest particles, wi ¼ 1=18 for the veloc-

ities j ~cij ¼ cl, and wi ¼ 1=36 for j ~cij ¼
ffiffiffi
2

p
cl.

By Taylor expanding the right-hand side of (1) and (2) to
second order in �t, and retaining terms only up to first
order in the Chapman-Enskog expansion f ¼ feq þ
kf1 þ � � � , where k� c	r is the Knudsen number, the
LB equations can be shown to reproduce the following
continuum fluid equations:

@t½ð�þ PÞ�2 � P� þ @i½ð�þ PÞ�2ui� ¼ 0; (6a)

@t½ð�þ PÞ�2ui� þ @iPþ @j½ð�þ PÞ�2uiuj�
¼ @j½@ið��ujÞ þ @jð��uiÞ þ @kð��ukÞ�ij�; (6b)

for the energy-momentum conservation, and

@tðn�Þ þ @iðn�uiÞ ¼ 0; (7)

for the conservation of particle number. The indices i, j,
and k denote the spatial components. The shear viscosity,
computed according to standard LB procedures, is � ¼
1
3�ð�þ PÞð	� �t=2Þc2l . Note that the LB equations are

inherently dissipative, since linear stability imposes the
condition �t < 2	, i.e., �> 0. Most remarkably, the nega-
tive shift ��t=2, which stems directly from the light-cone
structure of the LB streaming operator, permits one to
attain very small viscosities, of order, say, 10�3 in lattice
units, while still keeping �t ¼ 1, and 	� 1=2þOð10�3Þ.
This permits the simulation of very-low viscous flows
(such as the quark-gluon plasma) with time steps of order
Oð1Þ, which proves very beneficial for computational pur-
poses. Another valuable property of the LB formulation is
that, in contrast to other hydrodynamic formulations, dis-
sipation is not represented explicitly through second-order

FIG. 2. Set of discrete velocities for the relativistic lattice
Boltzmann model. The highest speed is

ffiffiffi
2

p
cl.
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spatial derivatives but emerges instead from first-order,
covariant propagation-relaxation dynamics, through adia-
batic enslaving of the momentum-flux tensor to its equi-
librium (ideal-hydrodynamic) expression. As a result of
this first-order dynamics, the Courant-Friedrichs-Lewy
stability condition of the LB scheme reads simply as u�t �
�x, instead of ��t < �x2, the latter being much more
demanding on the time step �t, as the grid is refined (�x !
0). Also, it is worth noting that our scheme smoothly
recovers the nonrelativistic limit by simply letting � ! 0.

To test the model we solve the Riemann problem in
viscous gluon matter [12]. We use the relation between
energy density and particle number density, � ¼ 3nT, T
being the flow temperature [15]. The initial configuration
consists of two regions divided by a membrane located at
z ¼ 0. Both regions have thermodynamically equilibrated
matter with different constant pressure P0 for z < 0 and P1

for z > 0. At t ¼ 0 the membrane is removed. We imple-
ment a one-dimensional simulation with an array of size
1� 1� 800. In this case, the 4-velocity is given by u� ¼
ð�; 0; 0; ��Þ�. From Eqs. (3) and (4), it is seen that the

positivity condition feqi > 0 implies ~ci � ~u <
c2
l

3 . Thus, by

increasing cl, the LB scheme is protected against
positivity-violating numerical instabilities. Clearly, such
an expedient must be accompanied by a corresponding
reduction of the time step �t, to preserve the light-cone
condition cl�t ¼ �x. For mildly relativistic problems, say,
�� 0:2, we choose cl ¼ c, i.e., c ¼ 1 in lattice units, so
that, strictly speaking, particles propagating along diagonal

links (see Fig. 2), move faster than light by a factor
ffiffiffi
2

p
(numerical tachyons). Since the physically relevant signal
is not the particle speed ~ci, but the fluid one ~u, at least for
mildly relativistic problems, this is a perfectly viable
procedure.

Based on the above, we choose �x ¼ 0:008 fm and
�t ¼ 0:008 fm=c in physical units. The entropy density
is computed as s ¼ 4n� n ln
, with 
 ¼ n

neq the gluon

fugacity and the equilibrium particle density neq given by

neq ¼ dGT
3

�2 , with dG ¼ 16 for gluons. Next, we can calcu-

late the ratio between the viscosity and entropy density,
�=s, that is used as a parameter to characterize the emer-
gence of shock waves within the quark-gluon plasma.
Pressures were chosen as P0 ¼ 5:43 GeV fm�3 and P1 ¼
2:22 GeV fm�3, corresponding to 7:9433� 10�6 and
3:2567� 10�6 lattice units, respectively. The initial tem-
perature is T0 ¼ 350 MeV, corresponding to T0 ¼ 0:0287
lattice units. With these parameters, the conversion be-
tween physical and numerical units for the energy is
1 MeV ¼ 8:2� 10�5. Figure 3 shows the results for dif-
ferent values of �=s and the comparison with the BAMPS
(Boltzmann approach of multiparton scattering) [18] mi-
croscopic transport model simulations [12] at time
3:2 fm=c. On the other hand, in Fig. 4, we can see the
evolution of the system for �=s ¼ 0:1 by comparing the
two numerical models. In both cases, we find an excellent
agreement with BAMPS. To simulate fluids moving at��

0:6, we use cl ¼ 10. The pressure P1 is taken as
0:9532 GeV fm�3, and we define two temperatures T0 ¼
0:0328 and T1 ¼ 0:0164, the first one for z < 0 and the
second one for z > 0. Figure 5 shows the shock wave for
�=s ¼ 0:001, and the comparison with the BAMPS simu-
lation [12] is again excellent.

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
/P

0

t = 3.2 fm/c

BAMPS: η/s = 0.001
BAMPS: η/s = 0.05
BAMPS: η/s = 0.1

0.00

0.05

0.10

0.15

0.20

-3 -2 -1 0 1 2 3

z (fm)

β

η/s = 0.001
η/s = 0.05

η/s = 0.1

LBS:
LBS:
LBS:

FIG. 3 (color online). Comparison between the BAMPS simu-
lations [12] and the LB results, for �� 0:2. Pressure (top) and
velocity (bottom) of the fluid as a function of the spatial
coordinate z.
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Our LB scheme easily extends to three dimensions, as
illustrated in Fig. 1, where we simulate a shock wave,
generated by, say, a �-ray burst or x-ray flash supernova
explosion, colliding against a massive interstellar cloud.
The ejecta from the explosion of such supernovae are
known to sweep the interstellar material up to relativistic
velocities along the way (relativistic outflows) [10]. A
typical 200� 100� 100 lattice-site simulation spanning
1350 time steps takes about 1900 CPU seconds on a
standard PC. Although a one-to-one comparison remains
to be done, our hydrokinetic algorithm appears to be nearly
an order of magnitude faster than corresponding hydro-
dynamic codes. This is most likely due to the fact that, in
the LB representation, information travels on constant light
cones rather than on material fluid streamlines [19]. As a
result, the Riemann problem trivializes to a mere shift of
the distribution function along the corresponding light
cone, a floating-point free, exact operation. Moreover, the
parametric scans conducted so far have not exposed any
numerical instability problem. A more exhaustive study
along these lines will be presented in a future and lengthier
publication.

In summary, we have developed a LB formulation for
(mildly) relativistic fluids, with � up to �0:6. The scheme
exhibits excellent agreement with previous numerical
simulations of shock-wave propagation in quark-gluon
plasmas, evidently at a fraction of the cost of hydrody-
namic codes. The present RLB scheme shows promise to
offer an efficient numerical solver for complex shock-
propagation and collision events of direct interest to rela-
tivistic fluid dynamics at large, from quark-gluon plasmas

to large-scale astrophysical flows in nonidealized geome-
tries. In analogy to compressible (nonrelativistic) fluids,
resorting to higher-order polynomial equilibria, and corre-
spondingly higher-symmetry lattices, is expected to soften
the positivity constraints, thereby giving access to still
higher values of �. These and other developments, such
as entropic formulations [20] and the extension to nonideal
equations of state, will be the object of future work.
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University. B. B. acknowledges NSF Grant No. 0619447
and TeraGrid allocation MCA08X031.

*mmendoza@ethz.ch
†bruce.boghosian@tufts.edu
‡hjherrmann@ethz.ch
xsauro.succi@gmail.com

[1] R. Benzi, S. Succi, and Vergassola, Phys. Rep. 222, 145
(1992).

[2] S. Chen and G. Doolen, Annu. Rev. Fluid Mech. 30, 329
(1998).

[3] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 91,
172302 (2003).

[4] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett.
101, 232301 (2008).

[5] F. Wang et al. (STAR Collaboration), J. Phys. G 30, S1299
(2004).

[6] J. Adams et al. (STAR Collaboration), Phys. Rev. Lett. 95,
152301 (2005).

[7] J. G. Ulery et al. (STAR Collaboration), Nucl. Phys. A774,
581 (2006).

[8] N. N. Ajitanand et al. (PHENIX Collabotarion), Nucl.
Phys. A783, 519 (2007).

[9] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 78,
014901 (2008).

[10] A.M. Soderberg, Nature (London) 463, 513 (2010).
[11] A.M. Soderberg, Nature (London) 442, 1014 (2006).
[12] I. Bouras, E. Molnar, H. Niemi, Z. Xu, A. El, O. Fochler,

C. Greiner, and D.H. Rischke, Phys. Rev. Lett. 103,
032301 (2009).

[13] J. Yang, M. Chen, I. Tsai, and J. Chang, J. Comput. Phys.
136, 19 (1997).

[14] A. Marquina, J.M. Marti, J.M. Ibanez, J. A. Miralles, and
R. Donat, Astron. Astrophys. 258, 566 (1992).

[15] C. Cercignani and G.M. Kremer, The Relativistic
Boltzmann Equation: Theory and Applications
(Birkhauser-Basel, Berlin, 2002).

[16] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M.A. Stephanov, J. High Energy Phys. 04 (2008) 100.

[17] P. Bathnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,
511 (1954).

[18] Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005).
[19] P. Romatsche (private communication); http://hep.itp/

tuwien.ac.at/~paulrom/.
[20] B.M. Boghosian, P. Love, P. V. Coveney, S. Succi, I.

Karlin, and J. Yepez, Phys. Rev. E 68, 025103 (2003).

LBS:

-3 -2 -1 1 2 30
0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1.0

z (fm)

β

BAMPS:

P
/P

0

FIG. 5 (color online). Velocity and pressure profile using nu-
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