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The instability and nonlinear evolution of directional ocean waves is investigated numerically by means

of simulations of the governing kinetic equation for narrow-band surface waves. Our simulation results

reveal the onset of the modulational instability for long-crested wave trains, which agrees well with recent

large-scale experiments in wave basins, where it was found that narrower directional spectra lead to self-

focusing of ocean waves and an enhanced probability of extreme events. We find that the modulational

instability is nonlinearly saturated by a broadening of the wave spectrum, which leads to the stabilization

of the water-wave system. Applications of our results to other fields of physics, such as nonlinear optics

and plasma physics, are discussed.
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Giant freak waves, or rogue waves, have been observed
in midocean and coastal waters [1], in optical systems [2],
and in parametrically driven capillary waves [3]. The freak
or rogue waves are short-lived phenomena appearing sud-
denly out of normal waves and with a small probability [4].
The study of extreme gravity waves on the open ocean has
important applications for the seafaring and offshore oil
industries, where they may lead to structural damage and
injuries to personnel [1]. It is, therefore, very important to
understand the physical mechanisms that lead to the for-
mation of freak waves. Since the linear theory cannot
explain the number of extreme events that occur in the
ocean and in optical systems, one has to account for non-
linear effects (e.g., wave-wave interactions) in combina-
tion with the wave dispersion. This can lead to the
modulational instability (for water waves called the
Benjamin-Feir instability [5,6]), followed by focusing
and amplification of the wave energy.

Wind-driven waves on the ocean often have wide fre-
quency spectra that are peaked in the direction of the wind
[7–9]. The statistics of directional spectra for narrow-band
gravity waves have also recently been studied experimen-
tally in water basins [10–12], where it was found that sea
states with narrow directional spectra (long-crested waves)
were more likely to produce extreme waves. Examples of
statistical models that govern collective interactions of
groups of water waves are Hasselmann’s model [13] for
random, homogeneously distributed waves and Alber’s
model [14] for narrow-banded wave trains. Wave-kinetic
simulations in one spatial dimension have shown Landau
damping and coherent structures [15] and recurrence phe-
nomena [16] for random water-wave fields. In this Letter,
we derive a nonlinear wave-kinetic equation for gravity
waves in 2þ 2 dimensions (two spatial dimensions and
two velocity dimensions) and carry out simulations to
study the stability and nonlinear spatiotemporal evolution

of narrow-band spectra waves that were observed in the
recent experiments by Onorato and co-workers [10]. The
present nonlinear wave-kinetic model, which is similar to
Alber’s model [14], is particularly suitable for studying the
nonlinear dynamics of narrow-band water waves due to its
relative simplicity. Similar nonlinear wave-kinetic equa-
tions also appear in the description of optical systems,
photonic lattices, and plasmas [17].
Deep water gravity waves are governed by the disper-

sion relation ! ¼ ffiffiffiffiffiffi
gk

p
, where g is the gravitational con-

stant, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the modulus of the wave vector

k ¼ kxx̂þ kyŷ, and x̂ and ŷ are the unit vectors in the x

and y directions, respectively. By assuming surface dis-
placements of the form � ¼ ð1=2ÞAðr; tÞ expð�i!0tþ
ik0xÞ þ complex conjugate, where A is the slowly varying
(j@=@tj � !0, jrj � k0) envelope, r ¼ xx̂þ yŷ is the
spatial coordinate, and !0 ¼

ffiffiffiffiffiffiffiffi
gk0

p
, the nonlinear interac-

tion of water waves is governed by the nonlinear
Schrödinger equation
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where vgr ¼ @!=@kx ¼ !0=2k0 is the group velocity,

Dx ¼ ð1=2Þ@2!=@k2x ¼ �!0=8k
2
0 and Dy ¼ ð1=2Þ@2!=

@k2y ¼ !0=4k
2
0 are the group dispersion coefficients, and

the nonlinear coupling coefficient is � ¼ !k20=2.
Introducing the two-dimensional Wigner transform [18]

fðr; v; tÞ ¼ 1

2ð2�Þ2
Z

A�ðRþ; tÞAðR�; tÞei��ðv�vgrx̂Þd2�;

(2)

where we have denoted R� ¼ r� ��D � � and ��D � � ¼
Dx�xx̂þDy�yŷ, we obtain the evolution equation for

the pseudodistribution function f as
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@f

@t
þ v � rf� 2i�

ð2�Þ2
ZZ

½IðRþ; tÞ � IðR�; tÞ�

� fðr; v0; tÞei��ðv�v0Þd2v0d2� ¼ 0; (3)

where Iðr; tÞ ¼ R
fðr; v; tÞd2v is the variance of the surface

displacement (the wave intensity). The transformation (2)
between (1) and (3) is valid in both directions for a deter-
ministic wave train (corresponding to a ‘‘pure state’’ in
quantum mechanics), with some restrictions on the distri-
bution function f [18]; however, we are interested in the
statistical properties of an ensemble of waves and more
general choices of f where the deterministic picture is
abandoned [14]. In the absence of the nonlinear term in
the left-hand side of (3), we have @f=@tþ v � rf ¼ 0,
which dictates that the wave energy propagates in space
with the group velocity v. Our model is valid for waves
with v � vgrx̂. The dispersive properties of the wave are

important for the nonlinear wave-wave interactions be-
tween wave packets that are modeled by the interaction
integral in the last term in the left-hand side of (3).

The velocity distribution can be related to the wave
spectrum in the frequency domain. Similar to Ref. [10],
we will use the model spectrum parameterized by the Joint
North Sea Wave Project (JONSWAP) as [7]

Sð!Þ ¼ �Pg
2

!5
exp

�
� 5

4

!4
p

!4

�
�expf�½ð!�!pÞ2=2�2!2

p�g; (4)

where!p is the peak frequency, � is the peak enhancement

parameter, and �P is the Phillips parameter. Here � is in
the range 1–6 for ocean waves [10], while �P is in the
range 0.0081–0.1; the values � ¼ 1 and �P ¼ 0:0081 give
the spectrum of fully developed wind seas [19], while the
larger values are observed in water tank experiments. We
will use �P � 0:025, � ¼ 3, and � ¼ 0:08, which are
consistent with the Marintek water basin experiment in
Refs. [10,11]. Since the wave spectrum is concentrated
around ! ¼ !p, we will use !0 ¼ !p and k0 ¼ kp 	
!2

p=g in the evaluation of Dx and Dy in Eq. (3).

The integral of the spectrum (4) over all frequencies
yields the variance of the surface elevation. While the
variance of a monochromatic wave is jAj2=2, from (2)
we also have

R
fd2v ¼ jAj2=2. Hence, as initial conditions

in our simulations, we will use f ¼ f0ðvÞ ¼ F0ðvÞGð�Þ,
where we have introduced polar coordinates vx ¼ v cosð�Þ
and vy ¼ v sinð�Þ in velocity space. We obtain F0 from the

frequency spectrum (4) by using the differential variance
dI ¼ Sð!Þd! ¼ F0ðvÞvdv, as

F0ðvÞ ¼ S½!ðvÞ� 1
v

��������
d!

dv

��������¼ S½!ðvÞ� g

2v3
; (5)

where we used that the group speed v of the wave packets
is related to the wave frequency ! ¼ ffiffiffiffiffiffi

gk
p

via v ¼
d!=dk ¼ !=2k ¼ g=2!, or !ðvÞ ¼ g=2v. The direc-

tional spreading function is chosen as [8] Gð�Þ ¼

G0cos
Nð�=2Þ ¼ G0½1þ cosð�Þ�N=2=2N=2, where cosð�Þ ¼

vx=v, v ¼ ðv2
x þ v2

yÞ1=2, and G0 is a normalization con-

stant [8] such that
R
�
�� Gð�Þd� ¼ 1. We note that G has a

maximum at � ¼ 0 and tends to a narrower distribution
with an increase of the parameter N.
Equation (3) can be cast into a numerically more con-

venient form by employing the Fourier transform in veloc-
ity space

f̂ðr;�; tÞ ¼ 2
Z

fðr; v; tÞei��vd2v; (6)

which transforms Eq. (3) into

@f̂

@t
� ir� � rf̂þ 2i�½Iðrþ ��D � �; tÞ

� Iðr� ��D � �; tÞ�f̂ðr;�; tÞ ¼ 0; (7)

where I ¼ f̂ðr;�; tÞ�¼0=2. A similar equation was derived

by Alber [14], starting from the Davey-Stewartson equa-
tions for weakly nonlinear gravity waves. The numerical
approximation of (7) is based on a method to solve the
Fourier transformed Vlasov equation [20]. By using a
pseudospectral method in space, the operator r is con-
verted to multiplication by i�, and the spatial shifts by

� ��D � � in Eq. (7) are converted to multiplications by

exp½�ið ��D � �Þ � ��, where � is the wave vector. The sys-
tem was solved in a computational window moving with
the group speed of the peak wave. We used a spatial
domain of size Lx � Ly ¼ 100k�1

p � 500k�1
p , resolved

by Nx � Ny ¼ 32� 32 intervals and with periodic bound-

ary conditions, and a Fourier transformed velocity domain
L�x � L�y ¼ 160�v�1

ph � 160�v�1
ph with N�x � N�y ¼

80� 80 intervals, where vph ¼ !p=kp is the phase speed

of the peak wave. The velocity domain in our simulations is
thus vx;min 
 vx 
 vx;max and vy;min 
 vx 
 vy;max, where

vx;min ¼ 0, vx;max ¼ 2�N�x=L�x ¼ 2vgr, and �vy;min ¼
vy;max ¼ �N�y=L�y ¼ vgr. The simulation was initialized

with the JONSWAP spectrum, where the Fourier integral
(6) was evaluated numerically to obtain the spectrum in �
space. Random numbers of the order 10�2 of the initial
intensity were added to the solution in order to seed the
modulational instability. The initial conditions give an
intensity of I � 0:010k�2

p uniformly distributed in space,

which is compatible with the experiments of Onorato et al.
[10]. To compare with the experimental observations of
Onorato et al. [10], we carried out simulations for N ¼ 24,
50, 90, 200, and 840 corresponding to the Marintek ex-
periment in Ref. [10]. They used !p ¼ 2 �s�1 (1 Hz) and

corresponding kp ¼ 4:1 m�1, and a significant wave

height Hs ¼ 0:08 m, giving a wave intensity of I � 5�
10�4 m2.
According to the analysis of Alber [14], using a model

two-dimensional normal spectrum, there are two condi-
tions for the modulational instability: first, the modula-
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tional wave numbers must lie within a certain directional

range (in Alber’s case jKxj>
ffiffiffi
2

p jKyj similar to the

Benjamin-Feir instability), and second, the wave steepness
(the wave amplitude multiplied by kp) must be larger than

the normalized (by the component of the spectral peak)
spectral bandwidth. In our simulations, using directional
JONSWAP spectra, we observed the modulational insta-
bility and the self-focusing of the wave energy into local-
ized wave packets for N larger than 24. We measured the
maximum value of the energy density in the simulation
domain and plotted its time evolution in Fig. 1 (the time is
give in units of the peak wave period 	p ¼ 2�=!p).

Initially, there is an exponential growth phase, reminiscent
of the Benjamin-Feir instability for monochromatic wave
trains [5]. The modulational instability is fastest growing
for N ¼ 840 and decreases with decreasing values of N.
For N ¼ 24 we do not observe any instability. For modula-
tionally unstable cases, the exponential growth phase is
followed by a nonlinear saturation of the instability and
finally a decrease of the maximum energy density down
to its initial background value I � 0:01k�2

p , as seen in

curves a–d of Fig. 1. The inset shows a simulation with a
narrow-band normal distribution of the form f ¼
4!�2

p expf�2½v2
y þ ðvx � vgrÞ2�=�2g with � ¼ 0:04vph,

which yields the initial wave intensity I ¼ 0:01k�2
p that

is similar as in curves a–d. This case shows a rapidly
growing instability to large amplitudes and then a decrease.
The linear growth rate !I of the instability for different
values ofN and�P was measured from the data and plotted
in Fig. 2(a). The growth rate is larger up to some limiting
value for long-crested waves with N > 102, while it ap-
proaches zero for smaller values of N. A growth rate of
!I ¼ 1–2� 10�3!p implies an amplitude doubling of the

unstable wave in 50–100 wave periods. The growth rate is
sensitive to changes of �P and shows an increase (de-
crease) of 50% with an increase (decrease) of �P by
20%; this is consistent with a ratio of unity between the
wave steepness and the spectral bandwidth, so that the
system is weakly unstable. The strongly unstable case for
the narrow normal distribution has a growth rate !I �
0:008!p, which is close to the limiting value [14] !I ¼
Ik2p!p for monochromatic waves.

The kurtosis is traditionally [21] estimated by the for-
mula �4 ¼ 3þ 24k2p�

2, where � is the standard deviation

of the surface elevation. (The term 3 comes from the
assumption of Gaussian statistics, and the term 24k2p�

2 is

a nonlinear correction to the Gaussian statistics.) Assuming
that the wave field is ergodic, we have �2 ¼ hIi, where hIi
is the spatially averaged wave intensity. As noted in
Ref. [11], this formula underestimates the kurtosis com-
pared to the experimental values for narrow-band water
waves, where an increase of the kurtosis was observed at
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FIG. 1 (color online). The time evolution of the maximum
intensity k2pImax for (a) N ¼ 840 (black), (b) N ¼ 200 (blue),

(c) N ¼ 90 (red), (d) N ¼ 50 (green), (e) N ¼ 24 (magenta), and
the case of a narrow-band normal velocity distribution (the
inset). The spatial distributions of wave intensity for (a)–(d)
are shown in Fig. 3 at the times indicated here with arrows.
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FIG. 3 (color online). The spatial distribution of the normal-
ized wave intensity k2pI for (a) N ¼ 840 at t ¼ 1:27� 103	p,

(b) N ¼ 200 at t ¼ 1:46� 103	p, (c) N ¼ 90 at t ¼
1:81� 103	p, and (d) N ¼ 50 at t ¼ 2:90� 103	p, correspond-

ing to curves a–d in Fig. 1.
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later stages of the wave dynamics. Our model also con-
serves hIi, and hence the formula predicts constant kurto-
sis. Taking into account that the wave field is nonstationary
and that the wave intensity varies in space (see Fig. 3),
we, instead, estimate the kurtosis as �4 ¼ 3hI2i=hIi2 þ
24k2phIi, which assumes that the surface obeys Gaussian

statistics locally everywhere. Using this estimate, we see in
Fig. 2(b) that larger N gives larger kurtosis, in good agree-
ment with experimental observations [10–12]. Figure 3
shows that the wave energy is concentrated into narrow
bands, elongated along the y direction, which are propa-
gating from left to right with speeds close to vgr. At later

stages, the wave packets start to break up due to the two-
dimensionality in space, and the elongated bands of wave
energy become more and more wiggled with the appear-
ance of obliquely propagating waves, similar to those
observed in Ref. [6]. For the modulationally unstable
cases, the nonlinear interaction leads to a broadening of
the distribution function in velocity space, as seen in Fig. 4.
This, in turn, leads to a stabilization of the system via phase
mixing of the wave envelopes [14] and a saturation and
decrease of the maximum intensity shown in Fig. 1.
In summary, we have performed a series of kinetic

simulations of narrow-banded water waves for different
degrees of directional energy spectra. We observe an onset
of the modulational instability and self-focusing of the
wave energy for waves with narrow directional spectra,
leading to an increase of the estimated kurtosis. The mod-
ulational instability saturates via the occurrence of narrow
wave packets, which later disperse due to the broadening of
the wave spectrum. Our simulation results are in excellent
agreement with observations from recent large-scale ex-
periments in wave basins [10–12].
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FIG. 4 (color online). The velocity distribution !2
pf of the

wave energy, averaged over space, at t ¼ 0 (left column) and t ¼
3:2� 103	p (right column), for (a) N ¼ 840, (b) N ¼ 200,

(c) N ¼ 90, and (d) N ¼ 50. Panel (e) shows the narrow-band
normal velocity distribution at t ¼ 0 (left) and t ¼ 640	p (right).
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