
Method to Generate Complex Quasinondiffracting Optical Lattices
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We put forward a technique that allows generating quasinondiffracting light beams with a variety of

complex transverse shapes. We show that, e.g., spiraling patterns, patterns featuring curved or bent bright

stripes, or patterns featuring arbitrary combinations of harmonic, Bessel, Mathieu, and parabolic beams

occupying different domains in the transverse plane can be produced. The quasinondiffracting patterns

open up a wealth of opportunities for the manipulation of matter and optical waves, colloidal and living

particles, with applications in biophysics, and quantum, nonlinear and atom optics.
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The advent of optical trapping and manipulation of
matter has revolutionized several branches of physics
from the micro- and nanoscale to the single-atom levels
and Bose-Einstein condensates [1]. Nondiffracting light
patterns have become key tools in topics as diverse as
trapping of in vivo and colloidal particles in biophysics
[2], atom optics [3], applications of optical lattices for
quantum computing [4] and quantum optics at large [5],
optical tweezing [6], and nonlinear optics [7,8]. The pat-
terns used to date correspond only to the known sets of
simple nondiffracting light beams that are exact solutions
of Helmholtz equation. Thus, group theory demonstrates
that there are only four different coordinate systems where
Helmholtz equation is separable [9], yielding invariant
solutions along the propagation axis: plane waves in
Cartesian coordinates, Bessel beams in circular cylindrical
coordinates [10], Mathieu beams in elliptic cylindrical
coordinates [11], and parabolic beams in parabolic cylin-
drical coordinates [12]. In addition one can mention accel-
erating Airy beams [13]. An important related open
problem is the generation of more complex nondiffracting,
or slowly diffracting, beams with arbitrary shapes and
symmetries. Here we put forward a powerful new strategy
that allows the generation of arbitrary complex light pat-
terns matching the requirements of a particular application,
which can be considered nondiffracting for all practical
purposes.

The field of a general nondiffracting beam propagating
along the � axis that does not experience acceleration in the
transverse plane may be written via the Whittaker integral
[10–12]:

qlattð�; �; �Þ ¼ expð�ik��Þ
Z 2�

0
Gð’Þ

� exp½iktð� cos’þ � sin’Þ�d’: (1)

Here k� and kt are longitudinal and transverse components

of the wave number k ¼ ðk2� þ k2t Þ1=2, respectively,’ is the

azimuthal angle in frequency space, �, � are the transverse
coordinates, and Gð’Þ is the angular spectrum which is
defined on an infinitely narrow ring of radius kt. In experi-
ments, truncated versions of nondiffracting beams are
commonly used that still can be considered nondiffracting
up to a finite distance. If the nondiffracting beam is modu-
lated by a Gaussian envelope, such distance is �w0k=kt,
wherew0 is the radius of the envelope. Such beams have an
angular spectrum defined on an annular ring of radius kt
with width �4=w0 [14]. A finite width of the angular
spectrum does not necessarily imply truncation of the
pattern. Superposition of two infinitely extended Bessel
beams with slightly different kt generates a pattern that
can be considered undistorted over a distance � that is
dictated by the difference in the kt values. Such a pattern
will distort in the entire transverse plane due to the accu-
mulated phase difference between the fields, in contrast to
truncated patterns where the perturbation moves from the
periphery to beam center. The point is increasing the width
of the angular spectrum in frequency space allows us to
construct beams with really complex shapes.
Our approach consists in engineering the angular spec-

trum in the frequency space under the constraint that the
transverse wave-number components k�, k� (k2t ¼ k2� þ
k2� ) are contained within a sufficiently narrow annular ring

to ensure almost nondiffracting propagation. The experi-
mental feasibility of such a concept has been demonstrated
[15]. Here we put forward an iterative Fourier algorithm for
construction of beams with arbitrarily complex shapes that
is reminiscent to methods used in phase retrieval and image
processing algorithms [16]. The first step is setting the
desired field distribution ~qð�; �Þ at � ¼ 0. The phase dis-
tribution arg½~qð�; �Þ� of the field is a free parameter, while
j~qð�; �Þj is selected to get the desired shape. Quasirandom
(or uniform) initial phase distributions yield convergence
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in most cases. However, an initial guess intuitively adapted
to the desired final arg½qð�; �Þ� distribution accelerates
convergence. On the next step the Fourier transform of
~qð�; �Þ is calculated and the components of the angular
spectrum for k�, k� falling outside the annular ring of

width �kt and radius kt are set to zero. One applies an
inverse Fourier transform to the resulting function and
substitutes the modulus of the obtained complex function
with the original field modulus j~qð�; �Þj, but keeps the new
phase distribution. This procedure is repeated until con-
vergence is achieved for a selected �kt. The phase factor
expði’0Þ in the trial distribution ~qð�; �Þ does not affect
convergence. The field qð�; �Þ from the last iteration is
used without replacing its modulus with j~qð�; �Þj, so that
some distortions will always appear in jqð�; �Þj, in com-
parison with the ideal distribution. The iterative procedure
produces patterns involving combinations of multiple truly
nondiffracting beams with slightly different kt values as
dictated by the width �kt of the angular spectrum. Such an
iterative procedure is crucial: the propagated trial beam
~qð�; �Þ decays after just a few diffraction lengths, while the
iterated beam keeps its structure over tens of diffraction
lengths. We use dimensionless transverse coordinates �, �
normalized to the characteristic width r0, while the longi-
tudinal coordinate � is normalized to the diffraction length
L ¼ k0r

2
0, where k0 ¼ 2�=� is the wave number. Thus, a

beam at the wavelength � ¼ 532 nm shaped in accordance
with our method that has a characteristic transverse scale
[for example, a spacing between stripes in Fig. 2(a)] r0 �
10 �m will remain undistorted over distance considerably
exceeding Ldif � 1:2 mm, while for r0 � 1 mm the dis-
tance of invariance will exceed Ldif � 12 m.

Examples of patterns generated with this algorithm are
shown in Fig. 1, where we aim to produce spiraling beams.
For a very small width of the angular spectrum �� 0:01
(� ¼ �kt=kt) one usually gets patterns that are far from the
desired ones, especially when ~qð�; �Þ exhibits a compli-
cated structure [Fig. 1(a)]. Increasing � up to 0.1 causes
dramatic improvements in the beam shape: while some
distortions are still visible, the desired spiraling pattern is
clearly resolvable [Fig. 1(b)]. Thus, engineering the angu-
lar spectrum allows us to construct patterns that have no
analogs among known nondiffracting beams. If � is further
increased one obtains even better approximation to the
desired beam [Fig. 1(c)]. The value of � has to be carefully
selected since a small �kt assures almost diffractionless
propagation, but at the same time it may result in patterns
that are rather far from the desired ones, while for suffi-
ciently large �kt one can generate patterns close to any
desired beam that, however, will be more prone to diffrac-
tion. Still, in [14] it was demonstrated that Bessel beams
with a Gaussian envelope may propagate undistorted over
distances largely exceeding Ldif even for �� 0:2.

Our technique allows us to introduce controllable dis-
tortion into otherwise rigorous nondiffracting beams. Thus,
using a trial function ~q ¼ cosðkt�Þ for � > 0 and ~q ¼

cos½ktð� cos�b þ � sin�bÞ� for � � 0 one can generate a
quasi-one-dimensional beam with stripes experiencing an
abrupt bending at an angle �b at � ¼ 0 [Fig. 2(a)]. Because
of robustness of the method the sharp shape variations
around � ¼ 0 are smoothed out. While for small angles
of bending��=18��b��=18 the beam shape is remark-
ably regular and its intensity remains almost unchanged
along the stripes, for higher bending angles the regions of
increased or decreased intensity appear [Fig. 2(b)]. De-
formed patterns featuring stripes that may periodically
curve in a horizontal direction are produced with ~q ¼
cos½kt� cos�b þ �a cosðkt� sin�bÞ�, where �a controls
the amplitude of deformation. For small �a the resulting
beams feature almost constant intensities along stripes
[Fig. 2(c)], while increasing �a results in the appearance
of domains with increased or decreased intensities and the
actual bending law for beam stripes may depart from the
harmonic one [Fig. 2(d)].

FIG. 2 (color online). Bent beams corresponding to
(a) �b ¼ 0:122 and (b) �b ¼ �0:209 at kt ¼ 2. Curved beams
corresponding to (c) �a ¼ �1 and (d) �a ¼ 2 at �b ¼ 0:209,
kt ¼ 2. Quasi-one-dimensional beams with one (e) and three
(f) enhanced channels at kt ¼ 4 and � ¼ 0:1.

FIG. 1 (color online). Spatial intensity distributions of spira-
ling beams (top) and corresponding angular spectra in frequency
space (bottom) for (a) � ¼ 0:01, (b) 0.07, and (c) 0.20.
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The method allows the identification of shapes of an-
gular spectra corresponding to novel types of nondiffract-
ing beams. Thus, a trial beam ~q ¼ J0ðkt� cos�bÞ�
expðikt� sin�bÞ, where J0 is zero-order Bessel function,
allows us to produce a single-channel pattern in real space
[Fig. 2(e)], while in frequency domain the spectrum of
such beam appears to be very close to infinitely narrow
ring and its angular distribution is well described by a step-
like functionGð’Þ that is nonzero within a finite interval of
angles ’1 <’<’2. This indicates that there exist truly
nondiffracting beams with such specific symmetry. In a
similar way one can construct nondiffracting beams featur-
ing several pronounced stripes [Fig. 2(f)]. The technique
may generate quasinondiffracting patterns featuring practi-
cally any combinations of known harmonic, Bessel,
Mathieu, or parabolic beams occupying different arbitrary
domains in the transverse plane. Thus, the trial beam ~q ¼
Jemðkt; "Þcemðkt; "Þ þ iJomðkt; "Þsemðkt; "Þ for 	1 <	<
	2 and ~q ¼ 0 otherwise, where Jem, Jom are even and
odd radial Mathieu functions, cem, sem are even and odd
angular Mathieu functions, " is the ellipticity parameter,
and 	 is the azimuthal angle in spatial domain, produces
the pattern featuring several confocal elliptical rings in a
selected angular domain 	1 <	<	2, while in other
angular domain the light field vanishes almost completely
[Figs. 3(a) and 3(b)]. The symmetry of the Mathieu pattern
for 	1<	<	2 remains almost unaffected. Growth of
the angular spectrum width � from 0.1 [Fig. 3(a)] to 0.2
[Fig. 3(b)] results only in slight modifications in the beam.
Such states experience exceptionally slow transforma-
tion on propagation; i.e., they are very close to nondif-
fracting beams. The possibility to combine beams with
different symmetries is illustrated in Figs. 3(c)–3(f) where
a parabolic trial beam ~q ¼ Peðkt; aÞPeðkt;�aÞ þ
iPoðkt; aÞPoðkt;�aÞ defined at �< 0 (here Pe, Po are the
even and odd parabolic cylinder functions, respectively,
while a determines the curvature of beam stripes) was

combined either with harmonic ~q ¼ c b cosðkt�Þ or
Bessel ~q ¼ c bJ1ðktrÞ patterns at � � 0 (here r is the
radial coordinate and c b determines the ratio of beam
amplitudes at �< 0 and �> 0). The resulting quasinon-
diffracting beams are characterized by sharp transitions
between domains with different field symmetries. An ex-
ample of a more complicated quasinondiffracting pattern
having no analogs among nondiffracting beams is shown in
Fig. 4. The beam of this type is produced by ~q ¼ sinðktr�
n	Þ, where n ¼ 0; 1; 2; . . . is an integer. When � ¼ 0:25
and n ¼ 0 a pattern is generated [Fig. 4(a)] whose shape is
well described by a radially periodic cosine function. For
n ¼ 1; . . . ; 5 and � ¼ 0:25 the method generates different
spiraling beams that are distorted in the center, but are
remarkably regular at moderate r values [Figs. 4(b)–4(f)].
Our method can be modified in order to generate a

required phase distribution in the beam instead of the field
modulus. This allows us to combine patterns character-
ized by different topological winding numbers (charges)
such as ~q ¼ JmðktrÞ expðim	Þ at 0<	<� and ~q ¼
c bJnðktrÞ expðin	Þ at�<	< 2�. Thus, form ¼ 3, n ¼
1 the pattern is obtained whose intensity remains almost
invariant on propagation, while phase accumulation rates
in different halves of the pattern differ considerably
[Fig. 5(a)]. Using m ¼ 3 and n ¼ �1 allows us to obtain
the beam with opposite phase accumulation rates in adja-
cent half-planes [Fig. 5(b)]. It is also possible to change the
phase distribution not in angular, but in radial direction
[Fig. 5(c)]. These results can be used to generate suitable
optical tweezers and atom traps, as well as to study the
transfer of angular momentum to atoms or microparticles.
The beams described here may be used to demonstrate a

variety of effects in different areas of science. Among their
applications may be the control of evolution of matter-
wave or optical solitons in optical lattices produced by the
corresponding nondiffracting beams. Because of their un-
usual symmetry such lattices may allow observation of new
types of soliton motion and may substantially enrich the
possibilities for all-optical routing of light signals. To

FIG. 3 (color online). Intensity distributions for (a),(b) trun-
cated Mathieu beams, (c),(d) parabolic-cosine beams, and (e),
(f) parabolic-Bessel beams. The top panels correspond to � ¼
0:1, while the bottom panels correspond to � ¼ 0:2. In all cases
kt ¼ 4.

FIG. 4 (color online). Intensity distributions of spiraling beams
at (a) n ¼ 0, (b) n ¼ 1, (c) n ¼ 2, (d) n ¼ 3, (e) n ¼ 4, and
(f) n ¼ 5. In all cases kt ¼ 4 and � ¼ 0:25.
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illustrate this, we consider the propagation of optical ra-
diation in a biased photorefractive crystal. The lattice that
is optically induced by a suitable quasinondiffracting beam
creates refractive index modulation in the transverse plane
(�, �) that can be considered invariable in the � direction
for sufficiently small � values. Nonlinearity of the crystal
affects only the probe beamwith polarization orthogonal to
that of lattice-creating beam that propagates in linear re-
gime [7]. The propagation of the probe beam is described
by the normalized nonlinear Schrödinger equation iq� þ
ð1=2Þðq�� þ q�� Þ þEqð1þ Sjqj2 þRÞ�1ðSjqj2 þRÞ ¼ 0,

where S ¼ 0:2 is the saturation parameter, E ¼ 12 is the
biasing field applied to the crystal, and the function R
describes the lattice shape that is proportional to intensity
of lattice-creating beam. If the optical lattice features
clearly pronounced guiding channels in the transverse
plane the soliton launched into one of such channels with
a proper input phase tilt may start moving along the guid-
ing channel, so that the trajectory of soliton motion will be
dictated by the topology of the lattice. In this way one can
force solitons to change their propagation direction in
lattices with bent channels [Fig. 6(a)], to move along

curved trajectory [Fig. 6(c)], or perform specific spiraling
motion in spiraling lattices [Fig. 6(c)].
Summarizing, we put forward a technique to generate

new types of complex quasinondiffracting light patterns.
The key ingredient of the method is engineering the angu-
lar spectrum of the kernel-generated function. The wider
the rings of the angular spectrum the higher the complexity
of the patterns generated, but the shorter the propagation
distance where they remain undistorted. The light patterns
described here are expected to find important applications
in several branches of science that currently use nondif-
fracting light beams for the manipulation of matter, such us
optical traps in biophysics and quantum and atom optics, or
to manipulate light itself.
S. L. A. acknowledges support by CONACyT (Grant

No. 82407) and Tecnológico de Monterrey (CAT141) for
his stay at ICFO.
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FIG. 5 (color online). Intensity distributions and engineered
phase structures of quasinondiffracting beams obtained by using
as a trial pattern a combination of two Bessel beams with
topological charges (a) m ¼ þ3, n ¼ þ1, (b) m ¼ þ3, n ¼
�1, and (c) m ¼ �5, n ¼ �1. In all cases kt ¼ 4.

FIG. 6 (color online). Snapshot images showing dynamics of
soliton propagation in (a) bent lattices with �b ¼ �0:087, kt ¼
2, (b) in curved lattice with �a ¼ �0:5, �b ¼ 0:209, kt ¼ 2, and
(c) in spiraling lattice with n ¼ 1, kt ¼ 4. In (a) the intensity
distributions corresponding to two different lattices are super-
imposed.
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