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We explore the advantages offered by twin light beams produced in parametric down-conversion for

precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that

monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-

breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature

for such an instrument. In a lossless setting, scaling of precision at the ultimate ‘‘Heisenberg’’ limit is

possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise

limited, and we identify the crossover point between quantum and classical precision as a function of

detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.
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We wish to promote the fitness of two spin-j systems
combined in an overall spin zero singlet as a resource for
metrology. A photonic implementation of such states is
readily and scalably generated using stimulated parametric
down-conversion (PDC) [1]. Both their rotational symme-
try [2] and persistence of entanglement [3,4] under pho-
tonic loss channels has made the singlets natural
candidates for quantum key distribution [5]. In this Letter
we further highlight their utility, this time in a parameter-
estimation protocol. Generally, such protocols are rated by
the precision (or uncertainty) associated with unbiased
estimation of the unknown parameter, and how quickly
this precision is lost under relevant decoherence. We will
show that given ideal conditions the singlets allow a pre-
cision scaling at the Heisenberg limit (the ultimate limit for
linear quantum processes, and for which noise scales as
1=N with respect to the light intensity or particle number
N). Under incoherent photon loss measurement precision
is naturally degraded, but at a much gentler rate than other
proposals [6] where the decay can be exponential in N.
(Recently, the role of photon losses in optical precision
experiments was examined carefully [7].)

Consider an instrument broken down into three compo-

nents [8]: pure probe state jc i, unitary evolution U ¼
expð�iĤtÞ under a time-independent Hermitian Hamilton-

ian Ĥ, and complete projective measurements, M̂ ¼P
imijiihij, where hijji ¼ �ij. We wish to infer evolution

time t from frequencies of outcomes mi, but t may equally
represent an interferometer phase, a magnetic or gravita-
tional field, or some other real-valued continuous variable.
Extrapolating from a set of parameter-dependent measure-
ments to an estimation of that parameter can be a challeng-
ing task. The probability distributions for individual out-
comes are often non-Gaussian, having multiple peaks or
broad tails. Quite separate from designing a good estimator
from measurement data, it is as important to employ mea-
surements sensitive to small changes in the unknown pa-
rameter. An optimal measurement should also, if possible,

achieve highest estimation precision for all parameter val-
ues. Conditions for identifying optimal measurements
were identified in early work on quantum Fisher informa-
tion. One parameter-independent approach uses canonical
measurements, but these are hard to implement directly
[9]. In other proposals, measurements are optimal near
particular ‘‘sweet spots’’ in parameter space, and require
multistep adaptive measurements to exploit them [10].
We first present a protocol in a decoherence-free setting

for which our proposed measurements are optimal,
parameter-free and practicable; they may be realized in a
laboratory by photon-counting or spin projections. We ex-
tend the analysis to consider realistic decoherence. Trans-
lating our protocols to a quantum-optics setting, charac-
terized by a PDC source, we evaluate the effect of photon
losses (in transmission and detection) on precision. It
emerges that spin-projection measurements are no longer
optimal or parameter independent. Nonetheless, precision
is always at least as good as the classical upper bound

(noise scaling / N�1=2, called the shot-noise limit) for any
loss.
Input states.—Let us introduce the states in the spin

representation [11]. Our probe is a bipartite maximally
entangled spin singlet

jc ðjÞ
0 i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p Xþj

m¼�j

ð�1Þj�mjj; miza � jj;�mizb (1)

labeling component spaces a and b. This state has total

spin J ¼ 0: hc ðjÞ
0 j ~J2jc ðjÞ

0 i ¼ 0 where ~J ¼ ð ~Ja þ ~JbÞ. The
singlet is ‘‘rotationally’’ invariant [2] under UðjÞ

a ðg1Þ �
UðjÞ

b ðg2Þ when g1 ¼ g2 2 SUð2Þ; its description in

Eq. (1) is identical in any spin basis, e.g. z � x � y, and
the state’s properties change only with the relative trans-

formation 1a �UyðjÞ
b ðg1ÞUðjÞ

b ðg2Þ. There is an application

here for relative measurements made between nonlocal
observers; global phenomena are excluded.
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Phase-estimation protocol.—Examine now the estima-
tion of a relative phase � accumulating between a and b.

Breaking the symmetry of jc ðjÞ
0 i by applying 1 �UðjÞ

b ,

yields the state jc ðjÞ
� i ¼ expð�i�ĴybÞjc ðjÞ

0 i if we choose

rotation about y. In the paradigm above, Ĥ � Ĵyb and t �
�. Then make projective measurements onto the basis of z

eigenstates for a and b, i.e., M̂ � Ĵza � Ĵzb. The proba-
bilities for the ð2jþ 1Þ2 measurement outcomes (A; B) are

PABð�Þ ¼ jhj; Ajz;ahj; Bjz;bjc �ij2 ¼
dðjÞB;�Að�Þ2
ð2jþ 1Þ : (2)

Note that PABð�Þ ¼ PABð��Þ, and to eliminate ambiguity
the range of � can be restricted to ½0; ��.

Quantifying precision.—To establish this scheme’s per-
formance we employ classical Fisher information Iclð�Þ ¼
P

A;BPA;B½ d
d� lnðPA;BÞ�2. It provides a distance metric in

probability space, e.g for � � 1 the distance between
PABð�Þ and PABð�þ �Þ is �

ffiffiffiffiffi
Icl

p
. A lower bound on the

variance of any unbiased estimator of � is I�1
cl [12]. Given

an unknown rotation by � about the yb axis a short
calculation [13] using Eq. (2) gives Iclð�Þ ¼ 4jðjþ 1Þ=3,
independent of � and achieving the quadratic scaling
characteristic of the Heisenberg limit (identifying a
spin-j state as a composite of 2j spin one-half particles,
the singlet then has particle number N ¼ 4j and Icl / N2).

The quantum Fisher information Iqu, provides a satu-

rable upper bound, Iqu � Icl. It is a function only of probe

and dynamics, assuming the best possible measurement
without defining it explicitly. For pure probe states,

Iqu=4 ¼ �2Ĥ ¼ hĤ2i � hĤi2 [14]. Using again Ĥ � Ĵyb,

Iqu ¼ 4hĴ2ybi ¼ 4h ~J2bi=3 ¼ 4jðjþ 1Þ=3 by symmetry.

Remarkably Iqu ¼ Icl, and our original measurement

choice is optimal and independent of the value of the
unknown parameter �, a preferred property of any
parameter-estimation scheme [8,15]. We make at this point
some observations about entanglement. First, making a

comparison between the probe jc ðjÞ
0 i and Bell states

jc ð1=2Þ
0 i numbering 2j (so total particle number 4j is the

same), we see that the former has much less entanglement
than the latter, log2ð2jþ 1Þ e-bits versus 2j e-bits, but a
greater value for Iqu, 4jðjþ 1Þ=3 versus 2j. Second,

although the Hamiltonian only operates on the b modes,
no phase information is imprinted locally as the reduced

state �ðbÞ is always maximally mixed—nothing is learned
by measurements exclusive to the space in which dynamics
occur. One might believe that the dependence of precision
on bipartite measurements is due to entanglement.
However, we will show it is retained under a disentangling
decoherence channel—exhibiting nonlocality without
entanglement.

Simulation.—The quantum bound ð��Þ2 � I�1
qu on

mean-squared error is attainable given infinite repetitions
of the experiment (using maximum-likelihood estimation),
but superior convergence of the high-j singlets may also be

shown when the number of samplings is relatively small,
the preasymptotic regime. A Bayesian protocol, considered
in Fig. 1, compares performance of higher-j singlets with
Bell singlets, so that the same total energy is detected in
both cases. We use data sequences with k updates of the
(uniform) prior distribution P0 ¼ 1=� given measure-
ments fAi; Big ¼ fA1; B1; A2; B2; . . . ; Ak; Bkg. Each se-
quence leads to a single � estimate that is the mean of
the final posterior distribution Pk. The conditional proba-
bility PðfAi; Bigj�Þ is determined from Eq. (2). The update
rule is Pkð�jfAi; BigÞ / PðfAi; Bigj�ÞP0ð�Þ and measure-
ment events are independent, so PðA1; B1; A2; B2j�Þ ¼
PðA1; B1j�ÞPðA2; B2j�Þ. In our simulation, we perform a
total of � independent phase estimates for each choice of
parameters j and k, and the total particle resource is 4�jk.
We find that the experimental error bars approach the

theoretical limit �� ¼ 1=
ffiffiffiffiffiffiffiffiffi
kIqu

p
as the particle number

increases; red horizontal error bars (spin-j singlets) are
seen to be narrower than corresponding blue ones (Bell
states) indicating superior precision of the higher-spin
singlets in the preasymptotic regime.
Linear optics and parametric down-conversion.—Now

we translate our previous arguments into an optical context
using an isomorphism between spins and a pair of har-
monic oscillators (Schwinger representation). A PDC pro-
cess produces entangled photons by interaction of a pump
laser field with a nonlinear birefringent crystal. The output
is shared among four optic modes, labeled fah; av; bh; bvg
for spatial directions a, b and horizontal and vertical polar-
izations h, v. (We use the same notation to denote the
associated bosonic annihilation operators.) The down-

conversion Hamiltonian is Ĥ ¼ �ðayhbyv � ayvbyh Þ þ H:c:
with � a coupling strength for the nonlinear process,
producing light via application to the vacuum:

expð�iĤtÞj0i. The effective parametric gain is � ¼ �t.
Applying the Schwinger representation to spatial mode

FIG. 1 (color online). Simulation with performance of spin-j
singlets (red, above) juxtaposed with spin-1=2 Bell pairs (blue,
below), the latter scaling at the shot-noise limit. There were � ¼
250 independent phase estimates contributing data points to each
of the six charts. A single estimate is obtained after a sequence of
k ¼ 20 Bayesian updates for probes with j ¼ 2, 3, 4 using the
distribution of Eq. (2). The true value of � is indicated by black
dashed lines. Maintaining the same particle number resource for
the Bell probes as the higher-j singlets equates with keeping jk
constant. Error bar widths are given to four decimal places.
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a: Ĵþa ¼ âyh âv, Ĵ�a ¼ âhâ
y
v , and 2Ĵz ¼ ðayhah � ayvavÞ

(the number difference). Also ~J2a ¼ ðn̂a=2Þðn̂a=2þ 1Þ,
where n̂a ¼ ðayhah þ ayvavÞ. Spin quantum numbers map

onto photon numbers as 2ja ¼ ðnha þ nvaÞ and 2ma ¼
ðnha � nvaÞ. We can now identify each of the elements of
our idealized parameter-estimation protocol with a realistic
optical source, as explained in Fig. 2. Measurement data
can be grouped by photon counting according to values of
ja;b, equivalent to postselection onto the space of a par-

ticular jc ðjÞ
0 i. Optimal correlation measurements Ĵza � Ĵzb

are reconstructed in each ja;b-labeled subspace, also from

photon counting because 2Ĵza ¼ n̂ha � n̂va. We acknowl-
edge here that efficient photon counting is generally a
nontrivial task [16].

Losses.—A realistic analysis must incorporate relevant
decoherence; for optic processes incorporating photon
counting the important mechanism is that of photon loss,
in transmission and detection [4]. Both loss types are
effectively modeled by placing partial transmission (	<
1) beam splitters in the four optic modes in front of perfect
detectors, splitting incoming photons into two output
modes: the mode transformation is â �

ffiffiffiffi
	

p
âþffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	
p

ê, where ê is an annihilation operator for the
ancillary loss mode. The photons siphoned out of the trans-
mission mode in this way are then traced over. Referring
either to modes a or to modes b, if losses are
polarization insensitive (	h ¼ 	v), the loss channel Lh

	 �
Lv

	 commutes with any U 2 SUð2Þ on the same spatial

path: Lh
	 �Lv

	½U�Uy� ¼ UðLh
	 �Lv

	½��ÞUy for any �.

This has two important consequences. First, the nonunitary
decoherence due to loss and the unitary� rotation in mode

b may be treated independently with impunity. Second,
after losses, each component of the PDC state, in a sub-
space labeled by (ja, jb), retains its symmetry under trans-

formations UðjaÞ
a ðgÞ �UðjbÞ

b ðgÞ. This implies a simple,

block-diagonal structure for the mixed lossy state

�ðja;jbÞ ¼ Xjaþjb

J¼jja�jbj

ðja;jbÞ

J �ðja;jbÞ
J : (3)

The 
ðja;jbÞ
J 2 ½0; 1� are weighting factors [4] and �ðja;jbÞ

J

are density operators proportional to identities in each
(2J þ 1)-dimensional orthogonal subspace labeled by total
spin J. As symmetry is preserved under loss, the state of
Eq. (3) retains a suitability for relative measurements
between spatially separated observers a and b. We stress
that for imperfect transmission 	< 1 there is nonzero
occupancy probability for spaces labeled (ja, jb), where
ja � jb. See Fig. 3(i). Measurements with na � nb need
not be discarded, they also contribute to overall precision.
Combining subspaces and ultimate precision.—By post-

selecting onto specific photon numbers (after losses) and
filtering the data sets we can focus on a particular (ja, jb)
subspace and analyze its contribution to overall precision.
Fortunately, both Iqu and Icl are additive, so total Fisher

Information per measurement is the average of the contri-
butions in each subspace weighted by the probabilities of
post-selecting each subspace. For the lossless case with

N̂ ¼ n̂a þ n̂b we know Iqu ¼ 4jðjþ 1Þ=3 (in a space with

na;b ¼ 2j photons) and the ensemble result is hIqui ¼
hN̂2i=12þ hN̂i=3. There are associated gains in precision

as hN̂i ¼ 4	sinh2� increases with � in the low loss regime.
For more significant loss there is a precision trade-off as
larger � are also associated with greater values of decoher-
ence � ¼ ð1� 	Þ tanh�within each subspace. This may be
viewed as higher–photon-number spaces being seeded ini-
tially, then as photons are lost these populations make an
incoherent contribution to the those of lower photon
spaces, ‘‘feeding’’ them from above with mixed state com-
ponents (bad for precision). We illustrate the effect of
decreasing transmission 	 on both subspace weightings
in Fig. 3(i), and precision within a subspace, in Fig. 3(ii)
(explicitly the ja ¼ jb ¼ 2 subspace).
Given a general mixed state � ¼ P

p�pjpihpj Fisher

information for unitary evolution under Ĥ � Ĵyb is hIqui ¼
2
P

q;r
ð�q��rÞ2
�qþ�r

jhqjĴybjrij2. By observing that the PDC is

Gaussian, and that loss channel and interferometer compo-
nents act as Gaussian operations, this functional can be
evaluated directly using phase-space methods [17].
Specifically, we employ the fact that squeezed light subject
to incoherent photon loss is formally equivalent to a
squeezing operator (with a modified parameter) applied
to a thermal state. This allows for the a full identification
of the spectrum for the lossy PDC state, and for hIqui to be

evaluated directly by finding nonzero contributions to the
sum [13]. We arrive at an expression for the complete

FIG. 2 (color online). Instrument composed of PDC source [1],
linear-optical elements (mirrors, phase element �, 50-50 beam-
splitters (bs), polarizing beam splitters (pbs), half-wave plate
�=2), and photocounters. In microscopy or interferometry,
modes a may be considered an ancilla or reference; only the
photons in modes b interact with the ‘‘sample’’. Disregarding
losses, the source produces a mixture of spin-j singlets, Eq. (1),
with weightings ð2jþ 1Þtanh4j�=cosh4� determined by the
parametric-gain parameter �. Each singlet has photon-number
N ¼ 4j, and the overall intensity is hN̂i ¼ 4sinh2� and �2N̂ ¼
coshð4�Þ � 1. Weightings of higher-photon-number singlets in-
crease with � but the large �2N̂ indicates a severe flattening of
the distribution. We note the immunity of counting measure-
ments to undesired path differences occurring outside of the
‘‘interferometer’’ block.
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Fisher information in terms of transmission 	 and detec-

tion flux hN̂i ¼ 4	sinh2�:

hN̂2iþ4hN̂i
12

�hIqui¼ hN̂ið4	þhN̂iÞ
8þ4ð1�	ÞhN̂i>

hN̂i2
8þ4hN̂i ; (4)

where the upper and lower limits correspond to 	 ¼ 1, 0,
respectively. Therefore, even in the worst case, losses

approaching 100%, asymptotically hIqui � hN̂i=4 when

� ! 1 and precision scales �� / hN̂i�1=2, as with shot
noise (in stark contrast to the exponential deterioration in
performance of other schemes [6]). As losses increase, flux

hN̂i can be maintained by turning up the parametric-gain �,
but the Fisher information will inevitably deteriorate be-

cause of its separate dependence on 	 and hN̂i above. It is
not known whether optimal measurements in the lossy case
can be independent of the true parameter value�, certainly

photon correlation measurements Ĵza � Ĵzb are no longer
optimal, see Fig. 3(ii). From Eq. (4) it is seen that our

scheme performs better than a sample illuminated with

coherent light of the same detected flux, for which hIqui ¼
hN̂i=2, when 	> 1=2þ 1=ð2þ hN̂iÞ. Transmission must
be better than 50% in the high flux limit to obtain a
quantum advantage with PDC.
Summary and outlook.—We have presented a parameter-

estimation protocol with several strengths. In a nondissi-
pative environment, Heisenberg scaling is achieved with
simple fixed measurements. Our scheme can be imple-
mented using PDC and linear optics, and under severe
dissipation (approaching 100%) it is still capable of preci-
sion scaling at the shot-noise limit. There exist a variety of
applications, such as fiber calibration, the phase micros-
copy of fragile biological specimens, and optical gyro-
scopes for GPS-free navigation. The increasing
asymmetry of the state with the magnitude of one-sided
rotations has a quantifiable utility in reference frame align-
ment [18].
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FIG. 3 (color online). (i) Under photon loss the PDC state
becomes

P
Pðna; nbÞ�ðja;jbÞ, where ja ¼ na=2; jb ¼ nb=2,

�ðja;jbÞ is given in Eq. (3), and Pðna; nbÞ is a weighting factor
for the corresponding subspace [4]. The three plots show
Pðna; nbÞ with interaction �� 1:83 and na;b 	 16. As trans-

mission 	 is reduced, the weightings of ja � jb spaces increase
and na;b 
 1 become less probable. In (ii) loss in transmission

and detection affects the estimation of � in the ðna; nbÞ � ð4; 4Þ
subspace. The contribution to hIcli is Ið4;4Þcl Pð4; 4Þ. For no losses

(	 ¼ 1), �ð2;2Þ is the singlet state jc ð2Þ
0 ihc ð2Þ

0 j and Ið4;4Þcl ¼ 8,
contributing to the quadratic precision scaling derived for the

lossless case. As losses increase, the precision degrades and Ið4;4Þcl

quickly becomes a function of both � and the decoherence
parameter � ¼ ð1� 	Þ tanh�. Blue shading indicates precision
below the upper limit for four uncorrelated photons in a classical
lossless two-mode interferometer, i.e., Icl 	 4. For � � 0:5
supraclassical precision (red shading) is possible for decoher-
ence � & 0:2. This corresponds to loss &26% for � ¼ 1, an
interaction value achieved in real experiments [3]. The maxi-

mum Ið4;4Þcl for each � value with photon-counting measurements

is projected on to the back wall as a grey silhouette—only

slightly inferior to Ið4;4Þqu , the best possible for any detection

scheme (red dashed line).
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