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We resurrect Eddington’s proposal for the gravitational action in the presence of a cosmological

constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in

the presence of sources and that charged black holes show great similarities with those arising in Born-

Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we

find that there is a minimum length (and maximum density) at early times, clearly pointing to an

alternative theory of the big bang. We thus argue that the modern formulation of Eddington’s theory, Born-

Infeld gravity, presents us with a novel, nonsingular description of the Universe.
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Introduction.—The Einstein-Hilbert action has been the
mainstay of gravitational theory for almost a century. It can

be expressed as SEH � 1
2

R
d4x

ffiffiffiffiffiffijgjp ðg��R�� � 2�Þ, where
g�� is the metric of space-time (and jgj is its determinant),

R�� is the Ricci tensor of that metric, and � is the cosmo-

logical constant (in this Letter we will work in Planck units
8�G ¼ 1). An intriguing, alternative proposal for the
gravitational action was proposed by Eddington in 1924
[1]. He suggested that, at least in free, de Sitter space, the
fundamental field should be the connection ��

�� and the

relevant action should be

SEdd ¼ 2�
Z

d4x
ffiffiffiffiffiffiffi
jRj

p
; (1)

where � is a constant with inverse dimensions to that of �
and jRj is the determinant of R��. Note that R�� is con-

structed solely from the connection. [Here and in the rest of
this Letter, R��ð�Þ represents the symmetric part of the

Ricci tensor build with the connection.]
By varying SEdd, integrating by parts, and eliminating a

vanishing trace, we obtain

r�ð2�
ffiffiffiffiffiffiffi
jRj

p
R��Þ ¼ 0;

where r is the covariant derivative defined in terms of ��
��

and R�� is the inverse of the Ricci tensor. This equation
can be partially solved if we define a new rank-2 tensor q��

such that r�ð
ffiffiffiffiffiffijqjp

q��Þ ¼ 0. The field equations for this
theory then become

2�
ffiffiffiffiffiffiffi
jRj

p
R�� ¼

ffiffiffiffiffiffi
jqj

q
q��; (2)

which can be rewritten as the Einstein field equations if we
equate q�� with g�� and � with ��1. Hence, Eddington’s

action should be a viable, alternative starting point to
general relativity. In fact, they can be viewed as being

dual to each other—while SEH is proportional to �, SEdd
is inversely proportional to �, and one can imagine that
they should be useful in different regimes.
Eddington’s theory of gravity is incomplete in that it

does not include matter. There have been subsequent at-
tempts at coupling matter to � in the original Eddington
spirit [2]. The idea is as follows. Start with a Palatini
gravitational action coupled to matter I½g;�;��. Here �
denotes all matter fields. The metric enters with no deriva-
tives, and it is, in principle [3], possible to express g�� in

terms of � and � by using its own equation of motion.
Since this step is algebraic, one can replace this formula
back into the action and obtain an ‘‘affine variational
principle’’ I0½�;�� depending only on the connection and
matter fields. The action I0½�;�� derived by this procedure
may be quite complicated [2], but it must be stressed that
its dynamics is fully equivalent to the original metric
theory. As a matter of fact, this procedure is most simple
without matter and precisely maps the Palatini version of
SEH into SEdd.
In this Letter, we shall reconsider the problem of cou-

pling Eddington action to matter without insisting either on
a purely affine action or on a theory equivalent to Einstein
gravity. We shall allow the metric to be present and switch

to a Born-Infeld-like [4] structure,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� þ �R��j

q
.

Observe that for large �R�� one reobtains the Eddington

functional. A purely metric proposal can be found in
Ref. [5]. We shall focus on a Palatini formulation (with
g�� and ��

�� independent) of the gravitational action first

proposed in Ref. [6]:

SBI½g;�;�� ¼ 2

�

Z
d4x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�� þ �R��ð�Þj

q
� �

ffiffiffi
g

p �

þ SM½g;�;��; (3)

where � is dimensionless. Note that � must be different
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from zero. For � ¼ 0 the metric variation yields (with no

matter)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþ �Rjp ½gþ �R��1�� ¼ 0, which clearly

makes no sense. In Ref. [6] the matter fields were intro-
duced in a nonconventional way inside the square root.
Here we add matter in the usual way.

This action has all the correct limits and no pathologies.
For small values of �R, the action (3) reproduces the
Einstein-Hilbert action with � ¼ ð�� 1Þ=�. On the other
hand, for large values of �R, the action approximates
Eddington’s. Unlike the matter actions built in Ref. [2]
and reviewed above, Eq. (3) is not equivalent to the
Einstein-Hilbert action, and we shall observe interesting
deviations especially for large curvatures when Eddington
action dominates.

In vacuumwith SM ¼ 0, on the other hand, the action (3)
is equivalent to SEH. This can be proven in two steps. With
SM ¼ 0 the equation of motion for g�� implies g�� ¼
�

��1R��. We then replace the metric back into the action

to obtain the Eddington action ��
��1

R ffiffiffiffiffiffiffijRjp
, which we al-

ready remarked is equivalent to SEH. The case � ¼ 1 is not
degenerate, although this particular proof fails. For � ¼ 1
the equivalence can easily be proven at the level of the
equations of motion. This is to be contrasted with fðRÞ
theories [7], either metric or Palatini, where deviations are
observed even in vacuum. We shall now consider Eq. (3)
with matter in different situations to explore its properties,
and we shall restrict ourselves to the case where matter
couples only to the metric (couplings to � may arise due to
quantum gravitational corrections). See [8] for other
discussions.

The equations of motion for this theory are the follow-
ing. By varying with respect to g��, one obtains

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþ �Rjp

ffiffiffiffiffiffijgjp ½ðgþ �RÞ�1��� � �g�� ¼ ��T��: (4)

Here T�� is the standard energy momentum tensor with
indices raised with the metric g��.

The variation with respect to � can be simplified by
introducing an auxiliary metric q�� compatible with �.

The equation of motion becomes

q�� ¼ g�� þ �R�� (5)

and ��
�� ¼ 1

2 q
�	ðq	�;� þ q	�;� � q��;	Þ. By combining

(4) and (5), one finds the equation

ffiffiffi
q

p
q�� ¼ �

ffiffiffi
g

p
g�� � �

ffiffiffi
g

p
T��: (6)

Again, here we have that q�� is the inverse of q��.

Equations (5) and (6) form a complete set and provide
the simplest set of equations to study this theory. The
conservation equations for the matter fields are the same
as in general relativity, T��

;� ¼ 0, where the covariant

derivative here refers to the metric g��. Although this

conservation equation is not at all obvious from the equa-

tions of motion (4), it is nevertheless true because matter is
covariantly coupled to g��.

We can now rewrite Eq. (4) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgþ�Rj

q
I¼

ffiffiffiffiffiffi
jgj

q
½ð1þ��Þg�1��g�1Tg�1�½gþ�R�;

where, for the moment, we are writing the equation in the
matrix format; I is a 4� 4 identity matrix. If we take the
determinant of both sides and replace it in the field equa-
tion, we find

g þ �R ¼ jgj1=2jð1þ ��Þg�1 � �g�1Tg�1j1=2½ð1
þ ��Þg�1 � �g�1Tg�1��1;

i.e., we can solve for R�� in terms of g�� and T��. Note

that this equation is generic. Recall, however, that R�� is a

function of ��
�� (and therefore q��).

By expanding the field equations to 2nd order in � to find
the 1st order corrections to Einstein’s equations,

R�� ’ �g�� þ T�� � 1
2Tg�� þ �½S�� � 1

4Sg���;
where S�� ¼ T�

�T�� � 1
2TT�� (note that � does not con-

tribute to S). By combining this equation with the second
field equation, Eq. (5), we have the lowest order correction
to Einstein gravity.
With the lowest order correction in hand, we can study

the nonrelativistic limit. As expected, the Poisson equation
is modified in this theory. Consider a time-independent
metric ds2 ¼ �ð1þ 2�Þdt2 þ ð1� 2�Þd~x � d~x, where
� and � depend only on ~x, and an energy momentum
tensor T�� ¼ 
u�u�. We linearize Eqs. (4) and (5) keep-
ing terms linear in �, �, and 
. The full set of linearized
equations is solved by � ¼ � plus the modified Poisson
equation,

r2� ¼ �1
2
� 1

4�r2
: (7)

We come up against a key characteristic of this theory—it
reproduces Einstein gravity precisely within the vacuum
but deviates from it in the presence of sources. We expect it
therefore to play a role in regions of high density, such as
within a black hole or in the very early Universe.
An obvious next step is to explore the inner structure of

black holes [9,10]. Let us consider spherically symmetric
configurations of the form

ds2 ¼ �c ðrÞ2fðrÞdt2 þ dr2

fðrÞ þ r2d�2: (8)

As we have just remarked, in vacuum, the action (3) is
fully equivalent to SEH with � ¼ ð�� 1Þ=�. The
Schwarzschild-de Sitter metric with c ¼ 1 and f ¼ 1�
2m=r��r2=3 is thus a solution to (3) with no sources.
New interesting effects show up when matter is present.
The simplest form of ‘‘matter’’ is an electromag-

netic field (matter in the sense that T�� � 0). Let us add
� 1

4

ffiffiffi
g

p
F��F

�� to the action (3). The exact solution can be
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found and involves elliptic integrals. For simplicity we set
� ¼ 1, yielding an asymptotically flat geometry. The so-
lution is

fðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ �q2

p

r4 � �q2

Z
dr

�ðr2 � q2Þðr4 � �q2Þ
r4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ �q2

p � 2M

�
;

c ðrÞ ¼ r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r4 þ 2�q2

p ; EðrÞ ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ �q2

p ;

where EðrÞ is the electric field, M is the mass, and q is the
electric charge. Observe the similitude with pure Born-
Infeld electrodynamics. For � > 0 the electric field is
everywhere regular. The metric functions and is still sin-
gular at r ¼ 0 and at r2 ¼ ffiffiffiffi

�
p

q. This singularity is, how-
ever, inside the horizon.

Strictly speaking, this solution represents the exterior
solution to a charged object. In this sense, the r ¼ 0
singularity does not yet imply a singular solution. In order
to explore the singularity structure of the action (3), one
needs to add normal matter and study a collapsing object.
A simple model is an interior cosmology glued together
with an exterior Schwarzschild metric. We shall discuss the
details of this problem elsewhere, but we can anticipate
interesting conclusions: As we now show, the cosmology
associated to Eq. (3) predicts a maximum density and a
singularity-free universe.

It has become clear that Eddington gravity can play a
role in regions of high curvature or density, the conditions
one might expect in the early Universe. We therefore focus
now on cosmology. We shall assume a homogeneous and
isotropic metric

ds2 ¼ �dt2 þ aðtÞ2d~x � d~x
coupled to an ideal fluid T�� ¼ ðpþ 
Þu�u� þ pg��. As
we remarked before, the fluid satisfies its standard conser-
vation equation _
 ¼ �3HðPþ 
Þ.

We can assume that q00 ¼ �U and qij ¼ a2V�ij and

use Eqs. (4) and (5) to find

U ¼ D

1þ �
T

and V ¼ D

1� �PT

;

where D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ �
TÞð1� �PTÞ3
p

, 
T ¼ 
þ�, and
PT ¼ P��. If we assume that P ¼ w
, we can define

Fð
;�Þ ¼ 1� 3ð�
T þ �PTÞð1� w� �
T � �PTÞ
ð1þ �
TÞð1� �PTÞ ;

Gð
;�Þ ¼ 1

�

�
1þ 2U� 3

U

V

�

to find the Friedmann equations:

H2 ¼ 8

9

G

F2
: (9)

If we assume w ¼ 0 (i.e., a dust-filled universe with a
cosmological constant), we can expand Eq. (9) in terms of

�� to find corrections to the late time Friedmann equations

3H2 ’ ð
þ�Þ þ
�

2

�
� ð
þ�Þ

�
��þO½ð��Þ2�:

As expected, we find that we recover conventional
Friedmann cosmology at late times.
Let us now focus on the evolution of the scale factor at

early times. Assuming radiation domination, we have

T ¼ 
, and PT ¼ P ¼ 1

3
, and, defining �
 ¼ �
, we

find that Eq. (9) becomes

3H2ð �
Þ ¼ 1

�

�
�
� 1þ 1

3
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �
Þð3� �
Þ3

q �

� ð1þ �
Þð3� �
Þ2
ð3þ �
2Þ2 :

For small �
 we recover the conventional Friedmann uni-
verse, H2 ’ 
=3, but at high densities we come up against
a novel effect: We find a stationary point H2 ¼ 0 at �
 ¼ 3
(for � > 0) and at �
 ¼ 1 (for � < 0). The new stationary
points correspond to a maximum density 
B; in Fig. 1 we
plot the H2 as a function of 
 within the physically accept-
able region.
If � is of order unity, then we can interpret this effect as a

cutoff in energy density at around the Planck scale. Given
that 
 / a�4 (recall that the conservation equation is the
same as in general relativity, so this relation does not
change in this theory), this means that there is a minimum

value for the scale factor at aB � 10�32ð�Þ1=4a0 (where a0
is the scale factor today), corresponding to a minimum
length aB � ð
0=
BÞ�4 in cosmology.
The nature of the expansion rate at aB depends on the

sign of � as we show in Fig. 2, where we plot the scale
factor a for both situations. For � < 0, one can show that
H2 / ða� aBÞ, which means that a� aB / jt� tBj2 for a
fixed tB. This means that at tB the Universe undergoes a
regular bounce. The transition through the bounce occurs

FIG. 1. The Hubble rate H2 as a function of energy density 

for a radiation-filled Universe with no cosmological constant and
j�j ¼ 1. We normalize the density by 
B [for which H2ð
BÞ ¼
0]; for � > 0 we have 
B ¼ 3=�, while for � < 0 we have 
B ¼
�1=�.
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on a time scale of�t ’ ffiffiffiffi
�

p
. Again, if � is if order unity, the

deviation from conventional cosmology occurs at the
Planck time on a time scale of that order.

A far more interesting, in our view, behavior can be
found if � > 0 where one can show that H2 � ða� aBÞ2,
which means that lnða=aB � 1Þ / t� tB. In this case there
is no bounce; if we wind back the clock, the energy density
will reach a point (corresponding to about 
B=2 as can be
seen from Fig. 1) in which accelerated expansion kicks in.
As above, this corresponds to what we would perceive as
the Planck time, but now the scale factor will take an
infinitely long time to reach aB. This leads to an intriguing
alternative cosmology at early times in which, depending
on how close its initial density is to 
B, the Universe loiters
for a long time (in terms of Planck units) until it emerges
into a standard cosmological evolution. This evolution can
be seen as an alternative incarnation of the Einstein static
universe at early times. As in the conventional construc-
tion, the loitering phase is unstable to expansion.

There are two effects that may be of importance in the
early Universe. First of all, it should be clear that we have
been looking at the classical behavior of this theory of
gravity. The onset of a bounce or minimum length may
signal pathologies at the quantum level, such as the pres-
ence of ghosts and negative normed states. A more de-
tailed analysis of the gravitational Born-Infeld action will
allow us to check if these pathologies indeed exist. Second,
we have discarded the effect of � (i.e., �� � 1) in our
analysis of the early Universe. If, however, there is an
early time contribution to � from, for example, an in-
flaton, the dynamics will be different; with �� ’ 1 there
will be another inflection point and H2ð
Þ will never reach

0 for a finite density. Such a scenario merits further
analysis.
Eddington’s theory of gravity, through its descendant,

the gravitational Born-Infeld action, may lead to an en-
tirely new view of the Universe. As pointed out above, the
presence of a maximum density in cosmology may have a
bearing not only on the early Universe but in the dynamical
formation of black holes. Thus, if a minimum length also
arises during gravitational collapse, the Universe may be
entirely singularity-free [11], solving one of the problems
that has troubled relativists since Einstein first proposed his
theory of gravity.
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