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Real-space renormalization approaches for quantum lattice systems generate certain hierarchical

classes of states that are subsumed by the multiscale entanglement renormalization Ansatz (MERA). It

is shown that, with the exception of one spatial dimension, MERA states are actually states with finite

correlations, i.e., projected entangled pair states (PEPS) with a bond dimension independent of the system

size. Hence, real-space renormalization generates states which can be encoded with local effective degrees

of freedom, and MERA states form an efficiently contractible class of PEPS that obey the area law for the

entanglement entropy. It is further pointed out that there exist other efficiently contractible schemes

violating the area law.
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Renormalization group (RG) methods aim at solving
many-body problems by treating energy scales in an iter-
ative fashion, progressing from high to low energies [1].
One of its earliest formulations is the real-space RG which
works by repeated steps of thinning out local degrees of
freedom and rescaling of the system as in Kadanoff’s block
spin transformation [2]. In real-space RG approaches to
quantum lattice models [3], in each RG step �, the system
is partitioned into small blocks. From those blocks high-

energy states are eliminated and the Hamiltonian Ĥ�þ1

for the renormalized system is obtained by applying the

corresponding projection operators, exactly Ĥ�þ1 ¼
P̂�þ1Ĥ�P̂

y
�þ1 or in some appropriate approximation, fol-

lowed by a coarse graining of the lattice. This is iterated,
e.g., until a step � ¼ T is reached where the renormalized
system consists of a single small block for which the
ground state jgsTi can be obtained exactly. Applying the
RG transformations in reverse order yields an approxima-

tion P̂y
1 P̂

y
2 . . . P̂

y
TjgsTi to the ground state of the original

model. Those states, generated by the real-space RG, fall
into the class of so-called tree tensor networks (TTN) [4].
A recent more elaborate real-space RG scheme, the multi-
scale entanglement renormalization Ansatz (MERA) [5,6],
a genuine simulation technique for strongly correlated
systems, allows in each RG step for local unitary opera-
tions to be applied before the elimination of block basis
states. The technique generates hence a more general class
of states, referred to as MERA states; see Fig. 1.

Whereas the degrees of freedom of MERA and TTN
states are organized in a hierarchical structure encoding
correlations on different length scales, there exists a differ-
ent class of so-called finitely correlated states where the
degrees of freedom are organized in a strictly local manner.
For D ¼ 1 dimensional systems they are often referred to
as matrix product states [7], and for D � 1 as tensor
product Ansätze or projected entangled pair states
(PEPS) [8]; Fig. 2. PEPS are the basis of powerful numeri-

cal techniques, such as the very successful density-matrix
renormalization group [9].
In this Letter, we establish the surprising fact that, for

D> 1, real-space RG, despite of the inherently hierarch-
ical nature of the procedure, generates states that capture
correlations by local degrees of freedom.More specifically,
it is shown that MERA states form a subclass of PEPS,
unifying both approaches. This also explains the failure of
real-space RG for some situations for which merely anec-
dotal evidence had previously accumulated.
PEPS, TTN, and MERA are all tensor network states

(TNS). In terms of an orthonormal product basis j�i ¼N
N
i¼1 j�ii for a lattice of N sites, TNS are of the formP
�c � j�i where the expansion coefficients c � are en-

coded as a partially contracted set of tensors; Fig. 2.
Recently, this notion has been generalized to the fermionic
case [10]. For a PEPS, to each site i, a tensor Ai is assigned
which has one physical index �i and further auxiliary
indices—one for each nearest neighbor—which need to
be contracted to obtain c � ; Fig. 2. For TTN and MERA,

FIG. 1 (color online). A 1D MERAwith linear branching ratio
b ¼ 2. Circles, squares, and the triangle denote tensors, the lines
denote contractions of those tensors. The squares are isometries
that map two local subsystemsH �

i andH
�
iþ1 into oneH

�þ1
i=2 as

in Kadanoff’s block spin transformation. The circles denote
unitary operators, disentanglers, reducing the entanglement be-
tween H �

i �H �
iþ1 and the rest of the system before the action

of the isometry. Tensor positions are chosen according to Eq. (6)
such that stacking of tensors is avoided.
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the tensors are arranged in a hierarchical pattern with the
physical indices in the lowest layer; Fig. 1. The number of
degrees of freedom of a TNS can be tuned by changing the
number � of values each auxiliary index runs over.
Increasing � for a fixed structure of the TNS enlarges the
variational space, allowing for a more precise approxima-
tion to the exact ground state in a variational method, but
increases computation costs. Hence, � is called the refine-
ment parameter of the TNS. The computational costs for
efficient simulation techniques scale polynomially in �.

ForD ¼ 1, TTN and MERA states can in general not be
encoded efficiently as PEPS. There are MERA states with
an entanglement entropy that scales logarithmically in the
subsystem size [11], as occurring in critical models [12],
whereas the entanglement entropy of 1D PEPS saturates
for large subsystem sizes. In this respect, MERA states are
more useful than PEPS for this case. For D> 1, however,
our aforementioned result on real-space RG means in the
tensor network language that MERA states with a refine-
ment parameter � can be mapped efficiently to PEPS such
that the resulting PEPS refinement parameter �PEPS is
some system-size independent function of �. This also
implies that D> 1 MERA states always obey the entan-
glement area law just as PEPS [12,13]. This behavior is
shared by ground states of noncritical systems and critical
bosons. Ground states of critical fermions, however, can
violate the area law [12,14]. Consequently � needs to be
scaled polynomially in the system size in order to describe
such critical fermionic systems accurately. Otherwise, the
real-space RG schemes addressed here [3,5] are neces-
sarily imprecise in that case. The remaining advantage of
D> 1 MERA is that local observables and correlation
functions can be evaluated efficiently, whereas, for PEPS,
approximations are necessary. In this sense, MERA states
simply form an efficiently contractible subclass of PEPS.
This raises the question of whether any efficiently con-

tractible tensor network automatically yields an area law
which is, however, not the case. To show this, we construct
an example of efficiently contractible TNS based on uni-
tary quantum cellular automata (QCA). For a specific
choice of the tensors, one obtains instances that violate
the area law for generic bipartitions of the system.
General procedure for mapping TNS to PEPS.—All

TNS can be mapped to PEPS, although not necessarily in
an efficient manner. To map a TNS to a PEPS one can
(a) assign each tensor of the TNS to a specific site of the
physical lattice [15]

V phys :¼ f0; . . . ; L� 1gD � ZD; (1)

and (b) for each contraction line that connects the tensors,
decide on a specific path for that line on the edges Ephys of

the physical lattice,

E phys :¼ fðr; r0Þ 2 V phys �V physjjr� r0j1 ¼ 1g; (2)

see Fig. 2. The tensors composing the PEPS are then
obtained by introducing for each edge of the lattice an
auxiliary vector space that is the tensor product of the
vector spaces of all TNS contraction lines that traverse
that edge. The elements of the PEPS tensor for site i are
determined by the elements of all the TNS tensors that
were assigned to site i. See Fig. 2(b).
Given a family of TNS for different linear system sizes

L, a mapping of the TNS to PEPS is called efficient if there
exists an upper bound �PEPS on the resulting PEPS refine-
ment parameter that is independent of L. Applying the
described mapping procedure for a 1D MERA state inevi-
tably results in an inefficient mapping, i.e., in a PEPS
refinement parameter �PEPS that diverges with the system
size. This is not just a feature of the specific procedure. In
[11], a family of 1D TTN states is constructed for which
any mapping to PEPS necessarily requires �PEPS to diverge
with the system size.
Qualitative argument.—The following argument moti-

vates why an efficient mapping of MERA to PEPS should
be possible for D> 1. Let us assign to each contraction
line of the MERA state a finite cross section, e.g., equal to
aD�1 with the lattice spacing a. Then one can ask what
D-dimensional volume Vð�Þ the contraction lines of a
certain layer � connecting to layers with �0 � � cover.
Those contraction lines of layer � have length ‘ð�Þ /
ab�, where b is the linear branching ratio of the MERA.

The number of lattice cells in layer � is bðT��ÞD; Fig. 1.
Hence, the volume covered by the contraction lines of layer

� is Vð�Þ / aD�1‘ð�ÞbðT��ÞD / bDT�ðD�1Þ�. The density of
the MERA contraction lines, or more precisely, a resulting
estimate for the average number of contraction line paths
traversing a unit cell of the physical lattice (� ¼ 0) is hence

log �ð�PEPSÞ / b�TD
XT
�¼0

Vð�Þ / XT
�¼0

b�ðD�1Þ�

) log�ð�PEPSÞ /
�
T for D ¼ 1

1
1�b�ðD�1Þ for D> 1; T ! 1:

(3)

(a)

(b)

FIG. 2 (color online). (a) Procedure for mapping a TNS (left)
to a 2D PEPS (right), by assigning tensors to lattice sites and
contraction lines to paths on the lattice. (b) The elements of the
PEPS tensors are determined by the elements of the tensors
composing the TNS.
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Note that for an edge traversed by n paths, one obtains an
upper bound �PEPS ¼ �n to the PEPS refinement parame-
ter, i.e., n ¼ log�ð�PEPSÞ. As T ¼ logbL, 1D MERAwith a

fixed refinement parameter � have according to Eq. (3) the
potential to encode states with a logarithmic scaling of the
entanglement entropy [11], as occurring in critical 1D
systems. For D> 1, however, Eq. (3) suggests that there
is enough space on the physical lattice to assign the MERA
contraction lines to paths on the lattice such that the map-
ping to PEPS is efficient. That this is indeed possible is
proven constructively in the following.

Preconditions for MERA states.—In order to show that
the mapping presented in the following is efficient, it is
necessary to exploit the defining properties of MERA
states that correspond directly to features of the real-space
RG and can be summarized as follows. (i) The MERA state
is a TNS for a D-dimensional square lattice (V phys, Ephys)

consisting of LD unit cells with

L ¼ bT: (4)

(ii) The MERA consists of T layers of tensors labeled by
� ¼ 1; . . . ; T. (iii) There is an upper bound � on the
dimension of the vector spaces associated to the tensor
indices, and an upper bound Co on the order of each tensor.
(iv) With each layer, we associate a coarse-grained square
lattice L� of ðL=b�ÞD cells of the physical lattice

L � :¼ f0; . . . ; L=b� � 1gD � ZD; (5)

and L0 :¼ V phys. Every cell of lattice L� contains corre-

sponding bD cells of lattice L��1. (v) There exists an
assignment of the tensors of layer � to cells of the lattice
L� such that the number of tensors inside a single cell is
bounded from above by a constant Ct, and the distance of
contracted tensors is bounded from above by Cr, where the
distance of a tensor of layer � to a tensor of layer �0 � � is
defined as the L1 distance of their corresponding cells in
L� [16]. (vi) For j�� �0j>CT , there are no contractions
between tensors of layer � with tensors of layer �0.

The upper bounds �, Co, Ct, Cr, and CT are required to
be independent of the system size L. [17] The stated
conditions guarantee that the MERA features a so-called
causal cone [6]. Hence, local observables can be evaluated
efficiently if all tensors are chosen isometric. As we require
only upper bounds on the MERA refinement parameter, the
apparent restriction to square lattices is not essential. The
conditions stated above are met for all typical MERA
structures considered in the literature so far. See Fig. 3(a)
for a 2D MERAwith b ¼ 2, Co ¼ 8, Ct ¼ 2, and CT ¼ 1,
for which one can reach Cr ¼ 2.

Efficiently mapping MERA to PEPS for D> 1.—Let us
explain a general scheme for mapping MERA states for
D> 1 dimensional systems efficiently to PEPS. The pre-
conditions listed above are assumed to be given. A simple
procedure to assign the MERA tensors to certain lattice
sites is to put the tensors of cell n 2 L� of layer � to the
site r�ðnÞ ¼ b�n 2 V phys. The problem with this ap-

proach is that one generates stacks of tensors at certain
lattice sites, i.e., there exist positions r 2 V phys to which a

number of tensors is assigned that is not independent of the
lattice size. For example, at site r ¼ ð0; . . . ; 0Þ a number of
/ T ¼ logbL tensors accumulate. Further stacks of tensors
with height / T0 accumulate at lattice sites with coordi-

nates bT
0 ð1; . . . ; 1Þ. It is necessary to avoid such stacks of

tensors, because they imply in general that �PEPS diverges
with the system-size. Stacks can be avoided by shifting the
allowed tensor positions for different layers relative to each
other. One possible such choice for r�ðnÞ is

r �ðnÞ ¼ b�nþ b��1e 2 V phys with n 2 L� (6)

and e :¼ ð1; . . . ; 1Þ 2 ZD as demonstrated in Fig. 1. With
this choice, two tensors can end up at the same site only if
they belong to the same layerL� and the same lattice cell n
within that layer. The possible tensor positions of layers �
form disjoint sublattices V � of the physical lattice.

V � :¼ fr�ðnÞjn 2 L�g � V phys;V � \V �0�� ¼ ;:
All coordinates ri of r 2 V � have a b-adic valuation of
�� 1, where the b-adic valuation vbðnÞ of an integer n is
defined such that vbðnÞ ¼ � iff � is the largest integer such
that n mod b� ¼ 0, for example, v2ð12Þ ¼ 2. Avoiding
stacks of tensors is not sufficient for an efficient PEPS
encoding. In D ¼ 1, all contraction lines are assigned to
paths that necessarily stack up on the x axis, Fig. 1. This
stacking of the paths can be avoided in D> 1 by assigning
contraction lines between tensors of layers � and �0 to paths
that are restricted to edges from subgrids E� and E�0 and
that are shortest paths with respect to the L1 distance on
V � [V �0 . Here, a grid E� is defined as the subset of
physical edges connecting nearest neighbors of the lattice
V � on straight lines; see Fig. 4.

E � :¼ fðr; rþ eiÞ 2 EPhysjvbðrjÞ ¼ �� 1 8 j � ig

(a) (b)

FIG. 3 (color online). (a) Unit cell of a specific 2D MERA
state. With each layer, corresponding to a single RG step, unitary
disentanglers are applied that reduce the entanglement between
blocks of 2� 2 sites with the rest of the system. Then, an
isometry maps from those 2� 2 sites (dots) into one (crosses).
(b) Mapping of this MERA state to a PEPS. The diagram shows
the assignment of two layers of the MERA, composed of disen-
tanglers û and isometries ŵ, to the physical lattice.

PRL 105, 010502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
2 JULY 2010

010502-3



with ½ei�j ¼ �i;j. Hence E� \ E�0 ¼ ; 8���0 . For this

choice of tensor positions and paths of MERA contraction
lines an upper bound for the resulting PEPS refinement
parameter �PEPS follows: Contraction lines assigned to an
edge e ¼ ðr; r0Þ 2 E� contract tensors of layer � with
tensors of layers �0 where j�0 � �j � CT . For a layer �0
with �0 > �, tensors from at most ð2CrÞD cells of L�0

around the cell corresponding to site r can have contraction
line paths traversing edge e. From the layers �0 with �0 �
�, tensors of at most ð2CrÞD PCT

t¼0 b
Dt cells can contribute.

Thus, the number of contraction line paths traversing edge
e and hence log�ð�PEPSÞ are bounded from above by

log �ð�PEPSÞ � ð2CrÞDðCT þ bDðCTþ1ÞÞCtCo: (7)

As this upper bound is independent of the system size, the
presented mapping of MERA to PEPS is efficient.

The scheme displayed in Fig. 3(b) for mapping the 2D
MERA defined in Fig. 3(a) to a PEPS results in the PEPS
refinement parameter �PEPS ¼ �6. In the supplement [11],
the notion of a refined PEPS is introduced which allows for
a favorable scaling, �refined

PEPS ¼ �2 in this case.

QCA violating the area law.—Let us point out that, also
for D> 1, there exist efficiently contractible TNS that
violate the entanglement area law; more details in [11].
Consider a QCA consisting of 2T layers, where in every
layer, ðL=2ÞD local unitary gates are applied to plaquettes

of 2� . . .� 2 sites each. For T ¼ ðlogLÞ1=D, the compu-
tation cost for the evaluation of local observables with
respect to such QCA is polynomial in L, namely

OðL2ðlogLÞ1=DÞ. At the same time, one finds for a suitable
choice of the unitary gates and generic choices for sub-
systems AL with VolAL / LD an entanglement entropy

of SAL
¼ �ðLD�1ðlogLÞ1=DÞ which violates the area law.

Conclusion.—In this Letter, we have shown that MERA
states for D> 1 can be efficiently encoded as PEPS. From
a physical perspective, the result implies that real-space

RG techniques, despite the scale-invariant features of the
TNS they generate, give rise to states that can be encoded
with local degrees of freedom. As a corollary, it follows
that D> 1 MERA states obey the area law for the entan-
glement entropy [12,13]. Consequently, the refinement
parameter � needs to be scaled polynomially in the system
size in order to describe D> 1 critical fermionic systems
accurately. Otherwise, the real-space RG schemes ad-
dressed here [3,5] are imprecise for such systems.
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Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[10] C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac,
arXiv:0904.4667; P. Corboz, G. Evenbly, F. Verstraete,
and G. Vidal, Phys. Rev. A 81, 010303(R) (2010); C.
Pineda, T. Barthel, and J. Eisert, Phys. Rev. A 81, 050303
(R) (2010); T. Barthel, C. Pineda, and J. Eisert, Phys. Rev.
A 80, 042333 (2009).

[11] See supplementary material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.105.010502 for amap-

ping to refined PEPS and for TNS that exceed the area law.
[12] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.

Phys. 80, 517 (2008); J. Eisert, M. Cramer, and M. B.
Plenio, Rev. Mod. Phys. 82, 277 (2010).

[13] G. Vidal, arXiv:quant-ph/0610099v1.
[14] M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006); D. Gioev

and I. Klich, Phys. Rev. Lett. 96, 100503 (2006); T.
Barthel, M.-C. Chung, and U. Schollwöck, Phys. Rev. A
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