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Recently, weak measurements were used to measure small effects that are transverse to the propagation

direction of a light beam. Here we address the question of whether weak measurements are also useful for

measuring small longitudinal phase shifts. We show that standard interferometry greatly outperforms

weak measurements in a scenario involving a purely real weak value. However, we also present an inter-

ferometric scheme based on a purely imaginary weak value, combined with a frequency-domain analysis,

which may have the potential to outperform standard interferometry by several orders of magnitude.
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A cornerstone of quantum mechanics is that a measure-
ment generally perturbs the system. Indeed, during the
process of a (standard) quantum measurement, the state
of the system is projected onto one of the eigenstates of the
measured observable. However, in 1988, in the context of
foundational research on the arrow of time in quantum
theory, Aharonov, Albert, and Vaidman [1] discovered
that quantum mechanics offers a much larger variety of
measurements. As a matter of fact, the only restriction
quantum mechanics imposes on measurements is a trade-
off between information gain and disturbance. Therefore,
strong (or standard) quantum measurements are only part
of the game. There are also ‘‘weak’’ measurements [2],
which disturb the system only very little, but which give
only limited information about its quantum state.

Weak measurements lead to striking results when post-
selection comes into play. In particular, the ‘‘weak value’’
found by a weak measurement on a preselected and post-
selected system can be arbitrarily large, where the most
famous example is the measurement of a spin particle
leading to a value of 100 [1]. Because of such unorthodox
predictions, weak measurements were initially controver-
sial [3] and were largely considered as a strange and purely
theoretical concept. However, they turn out to be a useful
ingredient for exploring the foundations of quantum me-
chanics. In particular, they bring an interesting new per-
spective to famous quantum paradoxes, as illustrated by re-
cent experiments [4] on Hardy’s paradox [5,6]. Further-
more, they also perfectly describe superluminal light
propagation in dispersive materials [7,8], polarization ef-
fects in optical networks [9], and cavity QED experiments
[10]. Weak measurements have been demonstrated in nu-
merous experiments [4,7,8,11] and were recently shown to
be relevant in solid-state physics as well [12].

Already in 1990 Aharonov and Vaidman [13] pointed
out the potential offered by weak measurements for per-
forming very sensitive measurements. More precisely,
when weak measurements are judiciously combined with
preselection and postselection, they lead to an amplifica-

tion phenomenon, much like a small image is magnified by
a microscope. This effect is of great interest from an
experimental perspective, since it gives access to an ex-
perimental sensitivity beyond the detector’s resolution,
therefore enabling the observation of very small physical
effects. Hosten and Kwiat [14] recently used this technique
to perform the first observation of the spin Hall effect of
light. More recently, Refs [15,16] took advantage of the
same method to amplify small transverse deflections of an
optical beam in order to measure the angular deflection of a
mirror with an impressive resolution of 400 frad.
The effects measured in Refs. [14–16] are all transverse

to the light propagation direction. Here we investigate the
power offered by weak measurements for measuring small
longitudinal phase shifts. We perform a comparison with
standard interferometry, which is the natural reference in
this context, taking into account the influence of experi-
mental errors. We consider the situation where the most
important errors are not due to statistics (i.e., the total
number of photons detected) but to imperfections in the
setup. For example, this is true if the phase that is to be
measured is stationary (e.g., a weak contrast, but stable,
microscopic sample), making it possible to integrate over
arbitrarily long times. While infinitely long integration
times are of course an idealization, situations where the
precision limit is not set by statistics, but by other factors
such as unavoidable alignment errors, are very common in
practice. We first consider a scenario involving a large real
weak value (combined with an analysis in the time domain)
and show that it is greatly outperformed by interferometry.
Then we present an interferometric setup involving a
purely imaginary weak value (combined with an analysis
in the frequency domain) and show that it has potential to
outperform standard interferometry by 3 orders of
magnitude.
Weak measurements with postselection.—We begin with

a brief review of weak measurements. We consider a
measurement scenario involving a physical system, in a
quantum state jc i, and a measurement device represented
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by a pointer state jgðxÞi, where x is the degree of freedom
used by the observer to eventually readout the pointer and
gðxÞ is the associated wave function. The observable to be
measured is denoted A. For simplicity we choose the
system to be a two-level system and write its state in the
eigenbasis of A: jc i ¼ �j0i þ �j1i, where j�j2 þ j�j2 ¼
1, Aj0i ¼ j0i, and Aj1i ¼ �j1i.

The first step in the measurement process is an interac-
tion between the system and the pointer, represented by a
unitary operation U ¼ e�iH�t, with the interaction
Hamiltonian given by H ¼ �PA, where P is the momen-
tum operator acting on the pointer state and�t the duration
of the interaction. Thus the action of U is to shift the
pointer depending on the quantum state jc i of the system.
More precisely, the initial state jgðxÞijc i gets mapped to

j�i ¼ UjgðxÞijc i ¼ �jgþij0i þ �jg�ij1i; (1)

where jg�i � jgðx� �Þi and � ¼ ��t.
In a second step the observer will perform a readout of

the pointer, by measuring its position, thus obtaining some
information about the system. The crucial point is now the
ratio between the pointer spread, denoted �, and the shift
of the pointer �. On the one hand, if � � �, the position of
the pointer gives full information about the measurement
outcome of A, since the overlap hgþjg�i is essentially 0. In
this case, the measurement is strong and corresponds sim-
ply to a standard quantum measurement. Note also that in
this case the state j�i is maximally entangled (for j�j ¼
j�j). Thus, measuring the pointer strongly perturbs the
state of the system. On the other hand, when � � �, the
position of the pointer provides only limited information
about the state of the system, since the overlap hgþjg�i is
roughly 1. Here the measurement is said to be weak. In this
case the state j�i is close to separable for all values of �
and �; thus, the state of the system is only weakly per-
turbed by the pointer measurement.

As mentioned above, weak measurements are of par-
ticular interest when combined with postselection. So we
add a postselection on the state of the system before the
observer gets to measure the pointer. The postselected state
is denoted j�i ¼ �j0i þ �j1i with j�j2 þ j�j2 ¼ 1. Thus,
the pointer state is now given by

fðxÞ ¼ h�je�i�PAjgðxÞijc i ¼ � ��jgþi þ � ��jg�i: (2)

In the regime of weak measurements, i.e., � � �, we find

fðxÞ ’ h�jð1� i�PAÞjgðxÞijc i
¼ h�jc ið1� i�AwPÞjgðxÞi ’ h�jc ie�i�AwPjgðxÞi:

(3)

Here Aw is the so-called weak value [1], given by

Aw ¼ h�jAjc i
h�jc i ; (4)

which should be understood as the mean value of observ-
able A when weakly measured between a preselected state
jc i and a postselected state j�i. Note that Aw in general is
a complex number [17]. Equation (3) shows that the shift in

position of the pointer is now amplified by a factor of
Re½Aw�. The imaginary part of Aw is associated with a shift
of the pointer in momentum space. As seen from Eq. (4),
Aw can be made arbitrarily large, when choosing prese-
lected and postselected states such that h�jc i ’ 0—the
probability of a successful postselection becomes then in-
deed arbitrarily small. Note that the weak value amplifica-
tion is obtained via a destructive interference, occurring at
the postselection, between the pointer states jgþi and jg�i.
Measuring small effects using weak measurements.—Let

us reconsider the above discussion from a different per-
spective. We now think of the unitary interaction U be-
tween the system and the pointer, not as being a
measurement process but rather as a small physical effect.
For instance, this effect could be a small birefringence in
an optical fiber, introducing a weak coupling between the
spatial mode of a light pulse and its polarization. Another
example is the spin Hall effect of light, where an optical
beam is slightly deflected (perpendicularly to its propaga-
tion axis) depending on its polarization.
We will focus on the regime where the effect under

consideration is so small that the resolution of our detector
is not sufficient to distinguish directly between both
pointer states jgþi and jg�i. Remarkably, weak measure-
ments are useful in this situation. Indeed, by carefully
choosing the preselection and postselection, it is possible
to amplify the shift of the pointer, the amplification factor
being given by the weak value Aw. The price to pay is that
the signal intensity will be lowered, since the weak value
becomes large in a regime where the preselection and
postselection are almost orthogonal. Still, the possibility
to increase resolution while decreasing the signal intensity
has already been proven useful for demonstrating tiny
transversal effects, such as the Hall effect of light [14]
and remarkably small beam deflections [15,16].
Measuring small longitudinal phase shifts.—We now

investigate the power offered by weak measurements for
measuring small longitudinal effects, by performing a
comparison with standard interferometry. For weak mea-
surements, we consider two different scenarios, involving
first a purely real weak value and second a purely imagi-
nary weak value. For clarity, we focus on the example of a
birefringent element, but our analysis also applies to lon-
gitudinal phase shifts that depend on other degrees of
freedom (e.g., the path in an interferometer). Specifically,
our goal is to perform an absolute measurement of a small
phase shift induced by the birefringence. As discussed
above, we consider the situation where the main experi-
mental limitation comes from errors in the alignment of the
setup as well as from imperfections of the optical elements,
rather than from statistics (i.e., photon shot noise) [18,19].
(a) Weak measurements, real weak value. We consider

the setup of Fig. 1(a). The goal is to measure a small
longitudinal delay (small phase shift) � introduced by the
birefringent element between the two pointer states jgþi
and jg�i, which correspond to the element’s (orthogonal)
polarization eigenmodes; here we choose j0i ¼ jHi and

PRL 105, 010405 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
2 JULY 2010

010405-2



j1i ¼ jVi. The delay � slightly modifies the time of arrival
of the pulse, depending on its polarization state. Using
polarizing beam splitters (PBS), we perform a preselection
and a postselection, which result in an amplification of the
delay—the amplification factor being Re½Aw�. Typically
we choose jc i ¼ 1

ffiffi

2
p ðj0i þ j1iÞ and j�i � 1

ffiffi

2
p ðj0i � j1iÞ,

resulting in a large (purely) real weak value. Finally, in
order to get access to the delay �, we measure the time of
arrival of the pulse in mode D1, which here is a dark port
since h�jc i � 0.

The probability to obtain a successful postselection is
given by p ¼ n=N ¼ jh�jc ij2, where N is the number of
photons initially prepared in the state jc i and n is the
number of photons actually detected (i.e., passing the
postselection). Thus we have Aw ’ 1

ffiffiffi

p
p . Note that since

there are no nonlinear effects, it does not matter whether
the photons are sent through the setup one by one or not.
The shift of the pointer is then given by �Aw ’ �=

ffiffiffiffi

p
p

.

Clearly, in order to detect the small effect �, the pointer
shift must be larger than the temporal resolution �t of the
detector, i.e., �Aw > �t, implying � >�t

ffiffiffiffi

p
p

. Thus, the

resolution of the detector is effectively increased by a

factor 1=
ffiffiffiffi

p
p

, when photons pass the postselection with

probability p.
However, in practice this factor cannot be made arbi-

trarily large because of experimental imperfections, which
lead to the detection of photons in the wrong output port.
To be specific, we will focus on errors due to the misalign-
ment of the PBSs; we denote 	 the error on the angle
between both PBSs. Here this forces us to work in the
regime where p > 	2, since we monitor the dark port of the
interferometer. Thus the resolution limit for weak mea-
surements with a real weak value is given by

� > 	�t: (5)

(b) Weak measurements, imaginary weak value. We
consider the same setup as above. To switch from a purely
real to a purely imaginary weak value, it suffices to modify
the preselection and postselection, i.e., the alignment of

both PBSs. Here we choose jc i ¼ ðjHi þ ijViÞ= ffiffiffi

2
p

and

j�i ¼ ðiei’jHi þ e�i’jViÞ= ffiffiffi

2
p

. The probability to pass
the postselection is then p ¼ sin2’ and the weak value is
Aw ¼ i cot’. Finally we perform a measurement of the
frequency spectrum of the pointer which gives access to the
phase. Here the weak value formalism predicts a displace-
ment of the pointer in the frequency space 
! ¼
2� Im½Aw�=�2 ’ 2�=ð’�2Þ for small ’ [17], which we
derive explicitly below.

For simplicity we consider a Gaussian pointer gðtÞ ¼
Ce�ðt=2�Þ2 where the constant C ensures that GðtÞ ¼ jgðtÞj2
is a probability distribution. After the postselection, the
pointer is given by Eq. (2) with � �� ¼ �ie�i’=2 and
� �� ¼ iei’=2. The spectrum of the pointer is

Fð!Þ ¼ jfð!Þj2 ¼ sin2ð!�� ’Þjgð!Þj2; (6)

where gð!Þ is the Fourier transform of gðtÞ. Based on
Eq. (6), one can show that for small ’ the frequency shift
is given by


! ¼
R1
�1 !Fð!Þd!
R1
�1 Fð!Þd! ’ 2�

�2’
: (7)

In order for this frequency shift to be measurable, we
require that 
!>�!, where �! is the resolution of the
spectrometer. Considering again an error level of 	, we
require that p ’ ’2 > 	2 [as for case (a)]. Thus the reso-
lution limit for weak measurements with an imaginary
weak value is given by

� > 	�2�!=2: (8)

(c) Interferometry. Here we consider a standard inter-
ferometric scheme [see Fig. 1(b)]. It is now advantageous
to use a laser of frequency ! working in continuous wave
(cw) mode. The light is first polarized at 45�. The final PBS
operates in the circular polarization basis, corresponding to
the states 1

ffiffi

2
p ðj0i � ij1iÞ, such that without the delay (i.e.,

for � ¼ 0), an equal intensity is obtained in detectors D1

and D2. Thus, for small �, one gets I1 ’ N
2 ð1þ 2!�Þ and

I2 ’ N
2 ð1� 2!�Þ. The intensity difference then gives ac-

cess to the phase:

FIG. 1 (color online). Measuring a small longitudinal effect
(here a tiny birefringence) using (a) weak measurements with a
real weak value, (b) weak measurements with an imaginary
weak vale, (c) interferometry. Each technique is characterized
by a particular alignment of the interferometer and by a specific
type of measurement. For weak measurements, the interferome-
ter is set such that the output mode D1 is a dark port—by
choosing (almost) orthogonal preselection jc i and postselection
j�i. This achieves an amplification of the small delay � intro-
duced by the birefringent element between the horizontally and
vertically polarized components. In the case of a real weak value,
this amplification occurs in the time domain; thus we perform a
time-of-arrival measurement which gives access to �. In the case
of an imaginary weak value, the pointer is shifted in frequency;
the final measurement is thus carried out in the frequency
domain. For interferometry we use a cw laser. The interferometer
is aligned such that, when � ¼ 0, the output intensities in modes
D1 and D2 are equal. Then, the intensity difference between
modes D1 and D2 gives access to the small phase shift �.
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jI2 � I1j ¼ 2N!�: (9)

Again assuming an error 	 on the angle between both
PBSs, giving here of order N	 potentially erroneous de-
tections in each detector, we are led to require that!� > 	;
note that the error level now depends linearly on 	 since the
interferometer operates in the regime where I1 � I2. Thus
the resolution limit for interferometry is given by

� >
	

!
: (10)

Comparison.—From inspection of Eqs. (5), (8), and (10)
we see that all techniques discussed above perform equally
well from the point of view of robustness to noise; in each
case the resolution limit scales linearly with the alignment
error 	. It is thus essential to compare the numerical fac-
tors. Equations (5) and (10) clearly show that interferome-
try outperforms weak measurement with a real weak value,
since �t is in practice many orders of magnitude greater
than 1=!. Whereas the latter is less than 1 fs for optical
frequencies, the best currently available single-photon de-
tectors still have �t > 10 ps [20], the two time scales are
thus separated by more than 4 orders of magnitude.

However, theweakmeasurement scenario becomesmuch
more interesting for the case of an imaginary weak value
combined with frequency-domain analysis. Currently
available lasers can generate femtosecond pulses; e.g.,
for a Ti:sapphire laser (operating at the wavelength � ¼
700 nm) one can have � ¼ 5 fs [21]. Currently available
spectrometers have a spectral resolution of �� ¼ 5 pm,
which leads to a frequency resolution of �! ¼ 20 GHz at
� ¼ 700 nm. Overall this leads us to expect an improve-
ment of 3 orders of magnitude compared to standard
interferometry: here we have that�2�! ¼ 0:5 as, whereas
for interferometry we have 1=! ¼ 0:4 fs at � ¼ 700 nm.

Conclusion.—We considered the task of measuring
small longitudinal phase shifts. Specifically, we studied
two techniques based on weak measurements and com-
pared them with standard interferometry, the natural refer-
ence in this context. We found that in the case of a real
weak value, weak measurements cannot compete with
interferometry. However, we also proposed a scheme in-
volving an imaginary weak value, combined with
frequency-domain analysis, which could in principle out-
perform interferometry by 3 orders of magnitude. Let us
note that, while our technique is inspired by the quantum
formalism of weak values, it also works for classical light.

Here we focused on the case where the resolution is
limited by alignment errors (which can account for a finite
extinction ratio of the polarizers, for example), but it would
also be interesting to study the influence of other types of
experimental errors (e.g., detector dark counts). Another
important open question is whether weak measurements
could also enhance the resolution in situations where sta-
tistics is the limiting factor.

Finally, we point out that there exist situations involving
longitudinal effects in which weak measurements with real
weak values can nevertheless be useful. This is the case in

differential interference contrast (DIC) microscopy [22],
which turns out to be strongly connected to weak measure-
ments [23].
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