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Focal conic domains are typically the ‘‘smoking gun’’ by which smectic liquid crystalline phases are

identified. The geometry of the equally spaced smectic layers is highly generic but, at the same time,

difficult to work with. In this Letter we develop an approach to the study of focal sets in smectics which

exploits a hidden Poincaré symmetry revealed only by viewing the smectic layers as projections from one-

higher dimension. We use this perspective to shed light upon several classic focal conic textures, including

the concentric cyclides of Dupin, polygonal textures, and tilt-grain boundaries.
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In equally spaced layered systems, such as smectics,
idealized flat layers are rarely realized while textures per-
meated with focal conic domains are prevalent [1–3]. They
are beautiful and geometrically precise conic sections that
are observed to occur in pairs of perfect confocal partners
and with adjacent domains often exhibiting a more wide-
spread level of geometric organization as in Friedel’s law
of corresponding cones [1,4], the networks and trellises
expounded by Bouligand [2], or Apollonian packings [5].
Since purely topological considerations are far too pliable
to produce this level of geometric precision, focal conics
must arise from a more rigid form of constraint; indeed,
prior even to the knowledge of their molecular nature, it
was realized that they are governed by the criterion of
equal layer spacing [1]. The condition of equal spacing,
though an idealization, is a boon to the description of
smectics, since it enables the form of the layers throughout
the entire system to be determined uniquely [6], for in-
stance from their focal sets. In this Letter we describe a
hidden symmetry that underlies the structures of focal
conics by viewing domains in d dimensions, Rd, as level
sets of hypersurfaces in (dþ 1)-dimensional Minkowski
space, Rd;1. In this framework, the equal spacing constraint
is equivalent to the condition that the hypersurfaces are
lightlike, or null. Lorentz transformations, by their very
construction, preserve the null condition; the level sets,
however, are changed, giving rise to different domain
geometries, which nonetheless arise from the same
hypersurface.

We quickly recall the symmetries and free energy of the
smectic liquid crystal phase. The smectic phase is charac-
terized by a 1D density wave, �ðxÞ ¼ �0 þ
�1 cos½2��ðxÞ=a�, where the level sets �ðxÞ ¼ na, n 2
Z, with a the layer spacing, define smectic layers with unit
normal N ¼ r�=jr�j. The ground state consists of
equally spaced, flat layers, and the free energy is

F ¼ 1

2

Z
ddx

�
B

4
½ðr�Þ2 � 1�2 þ Kðr � NÞ2

�
; (1)

where the first term, the compression, controls the spacing
and the second, the mean curvature of the lamellae. Twist
modes are expelled in the manner of the Meissner effect
[7]. The energy is invariant under � ! �þ const, and
N ! �N. The former symmetry represents a constant
displacement of the smectic layers, but we see that � !
�þ a is merely a reparametrization of the density; like-
wise the nematic symmetry implies that r� ! �r�
results in precisely the same density wave, or equivalently
� ! ��. It follows that� 2 S1=Z2. In this Letter we will
focus on configurations with vanishing compression—
bending modes are of lower energy at long length scales.
Deferring the full symmetries of � momentarily and

instead working in the universal cover, R, we recall that
as the phase field associates a real number to every point x
in the material, it is convenient to consider this as the
coordinate of an extra dimension and view the smectic as
a surface ðx; �ðxÞÞ in this larger space [8]. Equally spaced
structures, which correspond to focal conic domains, play a
privileged role. Examples of equally spaced smectics in-
clude the ground state � ¼ x, say, where the surface is a
plane, and the point defect � ¼ jxj, where the surface is a
right circular cone. Writing this last example instead as
jxj2 ��2 ¼ 0 affords a more useful interpretation: the
surface is the light cone of an event in Minkowski space
(with c ¼ 1), with the value of the phase field viewed as a
timelike direction. Importantly this correspondence is en-
tirely general, as the condition of being null corresponds
exactly to moving a unit distance in space for every unit
change in �, thereby ensuring equal spacing. Moreover,
since Lorentz transformations preserve null hypersurfaces
a fortiori, focal conics also inherit this symmetry [9].
Defining, according to tradition, � as the boost ‘‘velocity’’

and � ¼ ð1� �2Þ�1=2, the Lorentz transformation is x0 ¼
�ðx� ��Þ, y0 ¼ y, and�0 ¼ �ð�� �xÞ [10,11]. We also
bring the reader’s attention to the fact that the symmetries
relating different textures do not act on � alone, but on a
larger space [12]. Just as a cube can cast a square, rectan-
gular, or hexagonal shadow, so, too, do different ‘‘projec-
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tions’’ of the same surface lead to different smectic tex-
tures, revealing an underlying universal structure, namely,
the same null hypersurface, just viewed by different
‘‘observers.’’

A general null hypersurface will exhibit points of ‘‘sin-
gularity,’’ like the apex of the light cone, through which
multiple light rays pass. These points correspond to the
focal sets of the smectic and provide the most convenient
way of describing the texture. It is precisely at these points
that the projection of the surface normal is ill-defined,
corresponding to disclinations and kinks in the nematic
director, normal to the smectic layers. To construct the null
hypersurface corresponding to any focal conic texture, it
suffices to specify all of its focal sets. However, without
prior knowledge of their form, the general case would seem
a daunting task. Insight can be gained by first considering a
class of null hypersurfaces whose focal sets form a dual
pair. Not only does this immediately produce the precise
shapes seen experimentally, but it also yields a natural
generalization to multiple domain configurations that again
captures the experimental features.

Consider a pair of events in R2;1, which generate 2D
focal conics through the intersection of their light cones as
shown in Fig. 1. Note that the structures shown there are
not low-energy as 2D smectics, but are cross sections of
realistic 3D structures formed by cyclides of Dupin. As is
well known, a pair of events are either spacelike, timelike,
or null separated. Spacelike separated events have coordi-
nates (�r, 0, 0) in their preferred or ‘‘rest’’ frame and the
intersection of their light cones occurs on the hyperbola
y2 ��2 ¼ �r2, in the x ¼ 0 plane. In a general frame,
obtained by a boost along the x direction, the two events lie
at (��r, 0,���r), and the intersection of their light cones
becomes y02 � ð�0=�Þ2 ¼ �r2, x0 ¼ ���0. The smectic

layers are given by equal time slices (�0 ¼ na) of the null
hypersurface formed by the two light cones. These are
circles, or arcs of circles, concentric about ðx0; y0Þ ¼
ð��r; 0Þ that are the vertical projections of the two events
and the foci of one branch of the projected hyperbola
ðx0=��Þ2 � y02 ¼ r2, along which there are cusp singular-
ities—precisely the focal lines seen in cross sections of 3D
textures.
An identical analysis can be given for two timelike

separated events, which in their preferred frame have
coordinates (0, 0, �r) leading to an intersection of their
light cones on the circle x2 þ y2 ¼ r2 in the � ¼ 0 plane.
Boosting to a general frame as before, the two events take
the coordinates (���r, 0, ��r), while their conjugate
focal set becomes ðx0=�Þ2 þ y02 ¼ r2, �0 ¼ ��x0, the
equation of an ellipse. Again the projections of the two
events coincide with the foci of the ellipse. The final case
of null separation between the events is exceptional and we
defer its treatment for the time being.
In general, focal conics may be defined by their focal

sets; for two spacelike separated events these sets are � ¼
fx2 ¼ r2; y ¼ � ¼ 0g, �� ¼ fy2 ��2 ¼ �r2; x ¼ 0g,
while for two timelike separated events they are� ¼ fx2 þ
y2 ¼ r2;� ¼ 0g, �� ¼ f��2 ¼ �r2; x ¼ y ¼ 0g. In both
cases these sets are mutually null separated and lie in
orthogonal subspaces. In higher dimensions this simple
decomposition persists and the focal sets take the form

� ¼ fx2 þ ~y2 ¼ r2; ~z ¼ � ¼ 0g, �� ¼ f ~z2 ��2 ¼
�r2; x ¼ ~y ¼ 0g, where ~y and ~z are k- and (d� k� 1)-
dimensional vectors, respectively, with k 2 f0; 1; . . . ; d�
1g. This classification of these null hypersurfaces corre-
sponds with those described by Friedlander as being asso-
ciated with progressive wave solutions of the wave
equation [13]. As we shall see, they serve as the building
blocks for focal conic textures. The limiting cases k ¼ 0
and k ¼ d� 1 reduce to a pair of spacelike and timelike
separated events, respectively. In three dimensions there is
only one other possibility, namely, k ¼ 1 where the focal
sets are both 1D and correspond to a circle and an hyper-
bola lying in orthogonal subspaces. These are the elliptic-
hyperbolic focal conic domains, which give smectic layers
that are confocal cyclides of Dupin [1–3,14,15]. Splitting
R3;1 into two orthogonal subspaces is equivalent to
Maxwell’s double canal surface construction [15].
A null hypersurface S can be constructed from the focal

sets as the union of all light rays connecting e 2 � to �e 2
��; S ¼ fp ¼ ðeþ �eÞ=2þ �ðe� �eÞ=2; � 2 I �eeg where I �ee is
a connected interval of R depending on e and �e. For the
confocal hyperbola and ellipse, an explicit representation
of S follows from the form of the focal sets [13] ½ðsþ
rÞ2 þ z2 ��2�½ðs� rÞ2 þ z2 ��2� ¼ 0, where s �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the radius in cylindrical coordinates, (s, �, z,

�). This is precisely Cayley’s quadric expression [14] in its
‘‘rest frame,’’ and thus reveals that the Dupin cyclides are a
‘‘product of two cones.’’ Note that there is no need to
consider different cyclides or different types of elliptic-

FIG. 1 (color online). Achronal boundaries for (a) a pair of
spacelike and (b) timelike separated events, both in their rest
frames (left-hand side) and in a general frame (right-hand side).
The corresponding smectic textures (cross sections of realistic
3D structures) are shown below each surface, with focal lines
that are the projections of cusps on the surface (indicated in red).
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hyperbolic focal domains as they are all given by the same
null hypersurface: one need only exploit Lorentz trans-
formations and take different time slices. However, it is
important to make the distinction between the propagation
of light and smectic layers. In the former, the wave fronts
can pass through each other, while in the latter they cannot.
As shown in Fig. 1, for instance, this means that once the
cones intersect the null hypersurface ends on this lower-
dimensional cusp. In the parlance of general relativity, such
surfaces are known as achronal boundaries [16]. In general,

for those light rays originating from a point �e of �� with
�< 0 we take I �ee ¼ ½�1; 1�, while for points with �> 0
we take I �ee ¼ ½1;1Þ. Note that y and z may be replaced
with ~y and ~z without change to the foregoing discussion
[17].

Elliptic-hyperbolic focal domains arise from a decom-
position of Minkowski space into a pair of orthogonal
subspaces, one spacelike and one timelike, leading to focal
sets that are spheres of square radius �r2, one in each
subspace. The only other construction of this kind is a
decomposition of Minkowski space into a pair of orthogo-
nal null subspaces. Denoting by u� the affine distances
along the null directions (1, 0, 0,�1), we can take the null
subspaces to be the uþy and uþz planes, separated by a
distance � along the u� direction. One may swiftly verify
that the sets � ¼ f4�uþ þ y2 ¼ 0; u� ¼ �=2; z ¼ 0g and
�� ¼ f�4�uþ þ z2 ¼ 0; u� ¼ ��=2; y ¼ 0g are null
separated and thus serve as the focal sets for a null hyper-
surface, S, this time corresponding to a parabolic focal
conic. Again these coincide with Friedlander’s classifica-
tion of progressing waves [13].

Although single focal domains correspond to null hyper-
surfaces in Friedlander’s classification of progressive
waves, this correspondence does not carry over to textures
with more than one focal domain. Here we are tasked with
the question of how to appropriately adjoin separate do-
mains to form a larger structure, a task for which the
Lorentzian viewpoint provides a convenient perspective.
We provide two illustrative examples.

First, we consider the trellis configurations and Friedel’s
law of corresponding cones [1]. This is a collection of
cyclidal domains organized so that their hyperbolae all
intersect at a pair of points, as implied in Fig. 2. In
Minkowski space these points of intersection represent a
pair of spacelike separated events, which, as we have seen,
exhibit a conjugate focal set that is a hyperboloid [cf.
Fig. 1]. Friedel’s laws are simply the statement that the
ellipses of the individual cyclidal domains all lie on this
hyperboloid. Concretely, denoting the pair of events by
�0 ¼ fz2 ¼ R2; x ¼ y ¼ � ¼ 0g, the conjugate hyperbo-

loid is ��0 ¼ fx2 þ y2 ��2 ¼ �R2; z ¼ 0g. Observe that

the focal sets �1 ¼ fx2 þ y2 ¼ r2;� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

p
; z ¼

0g, ��1 ¼ fz2 � ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ R2

p
Þ2 ¼ �r2; x ¼ y ¼ 0g, are

cyclidal domains, exhibiting the desired nesting �1 � ��0,
��1 � �0, so that the focal ellipse of this domain lies on the

surface of the hyperboloid ��0, while the focal hyperbola

passes through the original pair of events, �0. Importantly,
this is preserved by Lorentz transformations and since

these act transitively on ��0 they in fact generate all focal

sets (�1,
��1) with this property.

The null hypersurface for the composite texture is
formed by taking the surface for the concentric sphere
domain and omitting those light rays connecting �0 to

the part of ��0 inside the circle �1. These are then replaced

by light rays connecting �1 to
��1. In this way the excised

region of the concentric sphere domain is filled with the
cyclides of Dupin [6] and because the interface consists of
the same light rays, both the smectic layers and the layer
normal are continuous across the join. Of course, this
construction can be repeated for a collection of focal

domains f�i;
��igNi¼1 to yield a trellis structure [2].

Tangency of adjacent ellipses corresponds to their foci
being null separated with the light rays connecting them
passing through their common point, as is readily apparent
when viewed from one of their rest frames [Fig. 2]. When
projected into Rd this is Friedel’s observation that straight
lines can be drawn between the foci of touching domains
that pass through their point of tangency [1].
Tilt-grain boundaries [4,5,18] involve a similar replace-

ment of a region of one type of texture with that of another,
and again this can be conveniently achieved by working in
the appropriate rest frame. In this instance, one removes a
cylindrical region of the ground state and fills it with the
inner part of a cyclide domain. This cyclide region is
described by those light rays connecting the elliptical focal
set � ¼ fx2 þ y2 ¼ r2; z ¼ � ¼ 0g to the branch of the

hyperbola �� ¼ fz2 ��2 ¼ �r2; x ¼ y ¼ 0g with �< 0.
Moving out along the hyperbola towards z ! �1 the light

FIG. 2 (color online). Two Dupin cyclide domains sharing a
point of tangency in a trellis configuration. The cyclides fill
conical regions extending from the point of intersection of their
hyperbolae to their focal ellipse, while outside these regions the
layers are continued by concentric spheres. In Minkowski space
(inset, z ¼ 0 subspace) the ellipses lie on the surface of an
hyperboloid. Tangency of ellipses corresponds to null separation
of their foci, as is most easily seen in the rest frame of one of the
ellipses.
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rays from any point of the ellipse asymptote onto the
directions (0, 0, �1, �1) corresponding to the equivalent
ground states � ¼ �z seen outside of the cyclides, Fig. 3.
Importantly, although these are equivalent, they are not the
same ground state but differ by a change in orientation
occurring at the ellipse�, which here has the appearance of
a þ 1

2 disclination loop. A boost along the x direction

rotates the asymptotic directions to (��, 0, �1, ��);
i.e., the cyclide region now connects the ground states
�0 ¼ ��x0 � ��1z0, rotated relative to each other by
2 arcsinð�Þ. Since the boosted ground states are no longer
equivalent, they no longer join smoothly on the plane, z0 ¼
0, �0 ¼ ��x0, but rather form a plane of cusps [Fig. 3].
The tilt-grain-boundary construction provides one example
of this generic behavior, that additional focal sets are
produced when a nonorientable texture is subjected to a
Lorentz transformation. Finally let us remark that,
although we have considered only one cyclide region, it
is clear that any number can be accommodated by tiling the
cuspy z ¼ � ¼ 0 plane of the rest frame with circles, each
circle being the elliptical focal set of a cyclide domain—in
fact, this is what is seen in experiment [3].

This Letter has demonstrated the connection between
focal conics in Rd and null hypersurfaces in Rd;1.
Specifically, in three dimensions we have shown that sim-
ple textures with codimension-two focal sets arise from
intersections of cones and planes. The addition of the extra
dimension clarifies the action of the isometries, just as an
extra dimension reveals the simplicity of the Möbius trans-
formations of the plane in terms of the symmetries of the
Riemann sphere [19]. Further work will elucidate other

smectic structures, such as Apollonian packings and oily
streak textures and will demonstrate that energetic calcu-
lations are natural in rest-frame coordinates [20]. Our
approach suggests that methods of general relativity will
be fruitfully used for the study of defects on curved sur-
faces [21]. We hope that the structure of defects presented
here along with the results of [8] set the framework for a
combined theory of disclinations, focal sets, and
dislocations.
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[3] M. Kléman and O.D. Lavrentovich, Liq. Cryst. 36, 1085

(2009).
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