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Sorting the integers 1 through N into an ordered list is a simple task that can be done rapidly. However,

using an algorithm based on the thermally activated pairwise exchanges of neighboring list elements, we

find sorting can display many features of a glass, even for lists as small as N ¼ 5. This includes memory

and rejuvenation effects during aging—two hallmarks of glassy dynamics that have been difficult to

reproduce in standard glass simulations.
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The slow dynamics of some low-temperature, out-of-
equilibrium systems can be highly complex. Without the
time or the ability to sample all of phase space as the
dynamics slows down, the relaxation develops a nonexpo-
nential form. The system is no longer stationary, but will
age, and it will often retain a memory of its previous
thermal history. Structural glasses, formed by supercooling
liquids, and spin glasses, formed by freezing dilute random
spin systems, are quintessential examples with such behav-
ior. Models with simplified dynamics, such as kinetically
constrained models [1], or those based on parking [2–4],
relaxation on hypercubes [5], etc., have been proposed to
illustrate one or another specific aspect of glassy relaxa-
tion. However, even such simplified systems have strained
the capacity of computers to reproduce many of the effects
readily observed in the laboratory. Here we present a
simple algorithmic model, based on sorting a small list of
numbers, which displays many of the dynamical features
associated with glasses, including those that have resisted
replication by large-scale computer simulations.

Consider the integers 1 . . .N, randomly arranged into a
list S ¼ fs1; s2; . . . ; sNg, to be sorted in ascending or de-
scending order. We model sorting as an activated process
governed by nearest-neighbor interactions, and define the
following Hamiltonian, whose ground state is a sorted list:

H½S� ¼ XN�1

k¼1

½ðskþ1 � skÞ2 � 1� � g
XN

k¼1

ðksk � �s2Þ

� H0 � gM: (1)

Here the ‘‘configurational’’ energy H0 minimizes the dif-
ference between adjacent list elements, and is symmetric
between S and its reverse. This symmetry is broken by the
term gM. Applying g > 0 (g < 0) selects the list sorted in
ascending (descending) order as the unique ground state.
Subtracting the constant �s2 ¼ ½ðN þ 1Þ=2�2 is done so that
a list and its reverse have values of M that are equal in
magnitude but opposite in sign. For a sorted list, H0 ¼ 0
and M has maximum magnitude. The thermal-sorting al-
gorithm (‘‘thermosort’’) is as follows: at each time step t,

we randomly select two adjacent list elements and attempt
to swap their places: S ¼ f. . . ; sk; skþ1; . . .g ! S0 ¼
f. . . ; skþ1; sk; . . .g. The probability that this swap will be
accepted is

pðS ! S0Þ ¼ minf1; e�ðH½S0��H½S�Þ=Tg;

where T is an effective temperature. Thus S explores a
space of N! configurations via the thermally activated
swapping of adjacent list elements.
Figure 1 illustrates several aspects of glassy dynamics

shown by this algorithm for small,N ¼ 8, lists. Figure 1(a)
plots the relaxation of the ensemble-averaged configura-
tional energy hH0i, starting from random initial states with
g ¼ 0. As T decreases, thermosort takes ever longer to
reach thermal equilibrium. For sufficiently low T, hHi
relaxes logarithmically over long stretches of time, indica-
tive of a broad spectrum of relaxation times. The system
remains far from thermal equilibrium even after millions of
time steps. As shown, the dynamics is only slightly sped up
when g is set to a small finite value. This is reminiscent of
the slow relaxation (or aging) of structural and spin glasses,
as well as the logarithmic compaction of a gently tapped
granular packing [6–9]. It is intriguing to find similar
relaxation in lists of only 8 numbers.
We define a susceptibility �M ¼ �M=�g, which de-

scribes the linear response of M to a small applied field
g. Figures 1(b) and 1(c) plot the T dependence of the
complex susceptibility ~�M ¼ ð�0

M; �
00
MÞ, measured forN ¼

8 by applying a small oscillatory field �g at frequency f.

Both �0
MðTÞ and �00

MðTÞ are singly peaked functions that
shift to lower T and are taller and more sharply defined for
lower frequency. Figures 1(d) and 1(e) plot the frequency
spectrum of ~�M at thermal equilibrium for different tem-
peratures. As T is lowered, the peak frequency fp of �

00
MðfÞ

shifts to lower f, indicative of a growing characteristic
relaxation time �p � 1=fp. The inset of Fig. 1(e) shows

that �p appears to follow an Arrhenius law: �p � e1=T .

Again, the phenomenology here is very similar to that
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found in the magnetic and dielectric spectroscopies of spin
glasses and glass-forming liquids [10–15].

At low T, the relaxation time of a glassy system is longer
than the experimental time scale, and the glass is out of
equilibrium. The properties of a glass are thus not sta-
tionary but depend on the experimental time scale (aging),
and on the thermal history (memory). A particularly strik-
ing manifestation of these features is found in the ‘‘reju-
venation and memory’’ phenomenon, first observed
experimentally in the magnetic susceptibilities of spin
glasses, and subsequently in the dielectric susceptibility
of organic glass formers [16–19]. If, on cooling a glass
from a high-T equilibrium state, the cooling is halted at
T ¼ Tage and kept there for a period �age, then as the glass

ages, the (magnetic or dielectric) susceptibility, �00, slowly
decreases in magnitude. When cooling is resumed, after

some time, the system appears to forget the aging experi-
ence and �00ðTÞ reverts to the reference behavior it would
have exhibited had the cooling been uninterrupted: the
system is said to be ‘‘rejuvenated.’’ If the glass is subse-
quently reheated, �00ðTÞ initially follows the reference
curve. However, as T approaches Tage, �

00ðTÞ will mirror

the aging-induced dip—it remembers its cooling history.
While seen in many experiments and subjected to several
theoretical models, this phenomenon has proven difficult,
if not impossible, to observe unambiguously even in so-
phisticated spin-glass simulations [20–27].
Figure 2 shows thermosort can clearly reproduce mem-

ory and rejuvenation, using only N ¼ 30. Figure 2(a)
shows �00

MðTÞ (averaged over many realizations) both in
the reference behavior, when cooling is continuous, and
when cooling was interrupted at Tage and the system is

allowed to age. In order to see the results more clearly,
Fig. 2(b) plots the difference between the aged and refer-
ence �00

MðTÞ curves for two different values of Tage. The

aging dip stands out clearly, and at low temperatures there
is rejuvenation as the aging curve reverts to the reference
one. On reheating, the memory dip is recovered, and it is
clear that the memory dip tracks Tage. Other, less complex

glassy effects, such as memory and annealing after step-
wise shifts in T, the Kovacs effect, thermoremanent mag-
netization, irreversible or reversible dynamics (as found in
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FIG. 2 (color online). Aging, rejuvenation, and memory in
thermosort, measuring �00

MðTÞ at f ¼ 4� 103 versus T. Here T
is ramped in steps of �T=�dw ¼ 1=103. (a) Dotted curve: refer-
ence �00

MðTÞ without aging. Solid curve: cooling was interrupted
at Tage ¼ 150 for a duration �age ¼ 4� 104, allowing �00

MðTÞ to
age, forming a dip. Warming back up, the aged �00

MðTÞ system-
atically dips below the reference in the vicinity of Tage. (b) The

difference between the aged and reference �00
MðTÞ, obtained for

two different values of Tage (dotted line, cooling; solid line,

warming). Data shown are ensemble-averaged over 105 realiza-
tions for N ¼ 30 and g ¼ 0.
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FIG. 1 (color online). Glassy dynamics for N ¼ 8.
(a) Relaxation of hH0i, starting from random configurations, at
various T; g ¼ 0 except for the dashed line at T ¼ 5. (b, c) The
complex susceptibility ~�M versus T, measured by ramping from
T ¼ 50 to T ¼ 0 and back in steps of �T ¼ 1, and dwell time
per temperature step �dw ¼ 104. The dashed line in (b) indicates
the equilibrium �M in the dc limit. (d, e) The equilibrium
spectrum of ~�M at different T. Lines are Havriliak-Negami fits
[12]. The inset of (e) plots the inverse peak frequency 1=fp ¼ �p
of �00

MðfÞ versus 1=T. Data shown are ensemble-averaged over

103 realizations.
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granular compaction [28]), etc., can be easily observed
using N as small as 5 [29].

While Figs. 1 and 2 describe the average behavior of a
large ensemble of independent thermosort realizations, we
can also visualize individual ‘‘trajectories.’’ We do so by
projecting the space of N! list configurations onto the (M,
H0) plane [Fig. 3(a)]. While this projection is not unique in
that multiple configurations may have the same coordinate,
the results are quite illuminating. At high T, a trajectory
quickly covers the accessible configuration space, as
shown in Fig. 3(b). But as T is reduced, the trajectories
become conned over long periods of time to one of a few
large basins with only occasional transitions between them,
as shown in Fig. 3(c). As T is reduced further, the trajecto-
ries become localized in smaller, more numerous, basins as

shown in Fig. 3(d). Thus as T is reduced, the accessible
configuration space breaks up into a succession of ever
smaller and ever more numerous basins.
To quantify the extent of localization, we divide trajec-

tories into blocks of length �obs. Within each block, we
calculate the standard deviations of H0 and M sampled by
the trajectory. These standard deviations, �H0 and �M,
are then averaged over all time blocks, and over an en-
semble of randomly initiated trajectories. The results
h�H0ð�obsÞi, h�Mð�obsÞi describe the localization extent
in H0 and in M as functions of the observation time �obs.
While both quantities grow with �obs, Figs. 3(e) and 3(f)
show that at low temperatures, h�H0i grows much faster
than h�Mi. This suggests that M is the principal ‘‘co-
ordinate’’ along which ergodicity is broken at low T.
To understand why trajectories localize in basins at low

T, Fig. 4(a) visualizes the evolving configurations of a
randomly initialized N ¼ 8 list as it is cooled from T ¼
50 to T ¼ 0. The final T ¼ 0 state, S ¼ f5; 3; 1;
2; 4; 6; 7; 8g, is not fully sorted, but consists of two sorted
‘‘domains’’ f5; 3; 1g and f1; 2; 4; 6; 7; 8g, joined by a ‘‘do-
main wall’’ at s3 ¼ 1. This configuration is locally stable:
swapping any adjacent pair leads to higher energy. All
locally stable lists have this partially sorted domain struc-
ture; for large N, locally stable configurations can have
many domains, so long as each domain contains at least
three elements. From a complete enumeration of all lists up
to N ¼ 9, we find that above N ¼ 5 the number of locally
stable configurations appears to grow exponentially withN
as shown in Fig. 4(b), and that the average energy barrier to
escape from locally stable configurations grows at least as
rapidly asN. These barriers stabilize the domains over long
periods of time, allowing even small lists to exhibit glassy
signatures. The smallest list in which domains are stable,
N ¼ 5, is also the smallestN to exhibit glassy dynamics. A
nonzero g destablizes some locally stable states while
creating new ones. Above jgj ¼ gc (¼12 for N ¼ 8),
which grows with list size, only the unique ground state
is stable and relaxation is rapid even at T ¼ 0. However, if
jgj � gc, many locally stable states remain, and thermo-
sort continues to exhibit glassy dynamics.
While inside a domain the list is ordered, the numbers

are not necessarily in consecutive order. Therefore in order
to anneal away a domain, rearrangements must occur
throughout and not just at its boundary. Thus even a
partially sorted list with large domains and low energy is
configurationally far away from the two fully sorted
ground states. This conflict between local and global order-
ing may be generic in glassy relaxation. For example, it is
reminiscent of the proposal that glass formation in simple
liquids arises from the incompatibility of local icosahedral
order with long-range periodic packing [30]. It also sug-
gests that the glassy dynamics of thermosort may be eased
by incorporating ‘‘nonlocal’’ swaps into its kinetics to
destabilize locally sorted domains. We define an interac-
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tion range r, such that sk and sk0 can be swapped if jk�
k0j � r. Setting r ¼ N � 1 removes all the locally stable
configurations except the ground states; this allows the
system to quickly reach thermal equilibrium even at T ¼
0. Varying r does not change the equilibrium properties of
thermosort, but it does speed up the kinetics by increasing
the connectivity of the configuration space. This is remi-
niscent of kinetically constrained glassy models, whose
Hamiltonians are often trivial, but can exhibit glassy dy-
namics when their kinetics are sufficiently constrained [1].

As a sorting algorithm, thermosort is exceedingly poor,
but it turns out to be an excellent glass former. It exhibits a
broad array of glassy phenomena, including rejuvenation
and memory, which have proven difficult to reproduce in
standard simulations of supercooled liquids or spin glasses.
Since thermosort is such a simple model, yet capable of
exhibiting glassy dynamics with as few as N ¼ 5 list
elements, we suspect it probably contains little more than
the minimal makings of a glassy system.
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FIG. 4 (color online). (a) The trajectory of a randomly initiated N ¼ 8 list (dark ! light ¼ 1 ! 8), slowly cooled from T ¼ 50 to
T ¼ 0 with g ¼ 0. The end state at T ¼ 0 is a locally stable configuration, consisting of two sorted domains concatenated at a ‘‘domain
wall’’ (k ¼ 3, arrow). (b) The number of locally stable states versus N, obtained by enumeration up to N ¼ 9.
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