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We investigate the properties of cuprate superconductors subject to applied current, using modified

Gutzwiller projected d-wave BCS states. The parent states include quasiparticle and quasihole pockets, of

variationally determined size, generated by the current. We identify two different mechanisms for the

destruction of superconductivity at the critical current: at high hole doping (x * 0:15) the pockets grow

and completely destroy the gap, in a BCS-like mechanism; in the underdoped regime, the superfluid

stiffness vanishes at a maximal phase twist with pairing still intact. This result is indicative of a

pseudogapped "normal" state which retains pairing correlations. The critical current as a function of

doping displays a dome shape, similar to Tc. We predict unique signatures of the current induced Fermi

pockets that can be seen in angle-resolved photoemission spectroscopy.
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Introduction.—Shortly after the discovery of high tem-
perature superconductivity in the cuprates, Anderson pro-
posed that the strong on-site repulsion and proximity to the
Mott insulator play a crucial role in determining the elec-
tronic correlations in these materials [1]. Such correlations
are naturally included in Gutzwiller projected variational
BCS wave functions, which indeed provide quite a good
description of the superconducting state [2,3]. However,
variational studies have not addressed the key open ques-
tions concerning the destruction of superconductivity with
temperature, the nature of the seemingly non-Fermi-liquid
normal state, the pseudogap phenomenon, possible com-
peting orders, and an associated quantum critical point.

Here we take a step toward addressing these issues using
Gutzwiller projected states. The idea is, rather than inves-
tigate the effects of temperature, which are inaccessible in
this approach, to study the consequences of an applied
current at zero temperature. Both mechanisms similarly
lead to the eventual demise of superconductivity and the
establishment of a normal state. The reduction of the
superfluid stiffness �sðTÞ is linear in temperature at low
T due to thermally excited quasiparticles in the d-wave gap
nodes [4]. A similar linear reduction is expected to occur
with external current due to formation of quasiparticle
(QP) pockets around the nodes, which are Doppler-shifted
away from zero energy in the presence of superflow [5]
(see illustration in Fig. 1). Our approach can therefore lend
insight into the puzzle concerning the evolution of the
slope @�s=@T with hole doping [6,7]. Furthermore, the
behavior of the superconductor with uniform current is
intimately connected to the effects of a magnetic field,
which generates supercurrents around the vortex cores.
The critical current which we calculate is related to the
maximal circulating current found at the edge of a vortex
core and the state formed at the critical current is connected
to the normal state in the core.

Whether superconductivity is suppressed by tempera-
ture, uniform current or (orbital) magnetic field, there
appears to be a qualitative change in the mechanism of
its destruction and in the corresponding ‘‘normal’’ state,
upon doping the system from the underdoped to the over-
doped regime [7]. A common view is that in the under-
doped regime superconductivity is destroyed with pairing
still intact [8,9], giving rise to a pseudogap above Tc [10].
In the overdoped regime, by contrast, the transition is
perceived to be conventional BCS-like. We shall directly
test such hypotheses using the variational approach by
suppressing superconductivity with a current.
To allow for the presence of a supercurrent we extend

the commonly used family of Gutzwiller projected d-wave
BCS variational states. The current is embodied in Fermi
pockets containing the quasiparticles and quasiholes gen-
erated by the Doppler shift around the gap nodes. A new
variational parameter determines the size of the pockets for
a given superflow. We use these variational states to com-
pute the critical current and discern the different mecha-
nisms that lead to destruction of superconductivity at
varying hole doping, as described in the abstract.
The variational wave function.—We set out to investi-

gate the ground state of the t-t0-J Hamiltonian on a square

FIG. 1 (color online). The low energy quasiparticle spectrum
of a d-wave superconductor with a Doppler shift due to a
superflow of wave vector Q ¼ Qx̂. The ground state consists
of the marked quasiparticle and quasihole pockets.
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lattice subject to superflow. In order to later fix the super-
flow wave vector Q ¼ Qx̂ it is convenient to impose a
constant vector potential along the x̂ direction via a Peierls
substitution,

HðQÞ ¼ PG

X

i;j;�

tije
i=2Qðxj�xiÞcyi�cj�PG þ H:cþ J

X

hiji
sisj:

Here PG ¼ �ið1� ni"ni#Þ is the Gutzwiller projection op-

erator. The variational wave functions we use are
Gutzwiller projected d-wave BCS states containing filled
QP and quasihole (QH) pockets around the nodes. Besides
the usual parameters � and� we include a new variational
parameter Qvar which determines the size of the current-
induced pockets. The superflow is imposed by constraining
� to be spatially uniform (and real) regardless of Q.

To motivate the construction of the wave function, it is
useful to recall the mean field BCS description of a d-wave
superconductor subject to a current of wave vector Q. The
Bogoliubov–De Gennes spectrum is given by

E�
k ðQÞ ¼ ��;kðQÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ;kðQÞ þ �2

k
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� 1
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vFðkÞ �Q� Ekð0Þ (1)

where �k is the single particle dispersion, �k ¼ �ðQÞ�
ðcoskx � coskyÞ the d-wave gap function, and ��;k �
ð�kþQ=2 � �k�Q=2Þ=2. The second line above gives the

low energy spectrum for small Q. The BCS ground state
is defined by occupation of all the negative energy QP
states. Because of the Doppler shift vF �Q=2, this implies
filling an elliptical pocket of QPs around the two down-
stream nodes and QHs around the upstream nodes, cf.
Fig. 1. More generally, due to interactions, the Doppler
shift may be renormalized to �vF �Q=2 � vF �Qvar=2.
The parameter � is commonly referred to as the effective
QP current renormalization [4,11]. In the parent BCS state
we shall allow the freedom to determine the size of the
pocket via the additional variational parameter Qvar inde-
pendent of the externally applied twist Q.
The variational state we construct is a Gutzwiller pro-

jection of the mean field ground state with N electrons,

j�ðNÞ½�; �;Qvar�i ¼ PGPN

Y

�;k2P ðQvarÞ
~�y
k�j�BCSðQÞi:

PN projects the state onto the N-particle subspace, P ðQvarÞ
denotes the wave vectors inside the QP pockets, and
j�BCSðQÞi is the vacuum of the QP operators,

~� y
k� ¼ ~ukðQÞcyk� � �~vkðQÞc�k �� (2)

with ~u2kðQÞ ¼ 1� ~v2
kðQÞ ¼ 1

2 ½1þ �þ;k=ð�2þ;k þ�2
kÞ1=2�.

We minimize the energy as a function of the variational
parameters �, � and Qvar using variational Monte Carlo
(VMC) calculations [2,3], with J ¼ t=3 and t0 ¼ �t=4.
The optimized energy and wave function are then used to
study the effects of strong correlations on a current- carry-
ing d-wave superconductor.
Quasiparticle properties of the projected state.—We

turn to investigate basic properties of the projected current
carrying state as would be observed in angle resolved
photoemission spectroscopy (ARPES). Specifically we
consider hnki, related to the spectral function via the sum

rule hnki ¼ P
�hcyk�ck�i ¼

R
0
�1 d!AQðk; !Þ. From the

variational state we can extract discontinuities in hnki
which correspond to the QP weights at ! ¼ 0.
To study the effects of strong correlations we compare

the structure of hnki in the projected state with that of the
underlying BCS wave function. Within BCS, the T ¼ 0
spectral function has the form

ABCS
Q ðk;!Þ¼ j~ukj2�½!�Eþ

k ðQÞ�þj~vkj2�½!�E�
k ðQÞ�

Consequently, hnki has discontinuities of magnitude ~u2k
(~v2

k) along the QP (QH) pocket Fermi surfaces, as depicted
in Fig. 2(c). At Q ¼ 0 the pockets shrink to 4 nodal points
with a QP weight of 1 along the nodal direction at each
point [12].
For the comparison with BCS, we plot jrknkj � Zk in

the projected state with Q ¼ 0 and Q ¼ �=2x̂ [Fig. 2(a)
and 2(b)]. The pocket Fermi surfaces in Fig. 2(b), marked
by the peaks of Zk, behave similarly to the BCS case

FIG. 2 (color online). Discontinuities in hnki and QP weight.
(a),(b) Gray-scale plots of Zk � jrknkj on a 24� 24 lattice,
doping x ¼ 0:12 and Q ¼ 0 (a) and Q ¼ �=2 (b). (c) The QP
weight on the current-induced Fermi surfaces in a d-wave BCS
state. (d) QP weight ZkðQ ¼ �=2Þ (black circles) and the QP

weight renormalization �k � Zk=Z
ðBCSÞ
k (squares) along the

quasihole pocket Fermi surface (see inset). (e) Fermi surface
average of �k as a function of doping (squares) compared with
the zero current result of Ref. [3] (dotted line) and the renor-
malized mean field result gt ¼ 2x=ð1þ xÞ (dashed line).
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shown in Fig. 2(c). To quantify the relation we extract the
ratio between the QP weight after projection and the bare
BCS value along the hole-pocket boundary�k � Zk=Z

BCS
k

[filled squares in Fig. 2(d)]. Interestingly, �k is almost
independent of k. This is consistent with the central as-
sumption of renormalized mean field theories (RMFTs)
[13,14], that the Gutzwiller projection can be encapsulated
in a global renormalization factor. We also find that the
renormalization factor is independent of current, and its
doping dependence [Fig. 2(e)] matches with the zero cur-
rent result obtained in Ref. [3].

The above predictions for ARPES do not depend on the
pocket shape. For clarity, we chose�,� andQvar to obtain
circular pockets rather than the variationally determined
elliptical shape.

Critical current in the variational state.—The critical
current is the maximal current that can be imposed on a
superconductor

Jc ¼ max
Q

dE

dQ
(3)

and it occurs at a critical flow wave vector Q ¼ Qc. The
maximum is taken under the constraint that at the flow Q
the variational Fermi pockets do not yet cover the under-
lying large Fermi surface, at which point superconductivity
would be lost due to complete depairing. Technically, we
obtain Qc and Jc by fitting the variational energy, calcu-
lated on a 18� 18 lattice, to a polynomial [15]

EðQÞ ¼ E0 þ 1

2
�s0Q

2 � 1

6
	jQj3 þOðQ4Þ: (4)

The results of this analysis are shown in Fig. 3. Fig-
ure 3(a) displays the variationally determined Qc as a
function of the doping x. Notably, Qc is essentially inde-
pendent of x for x � x0 ¼ 0:15, and it drops sharply for
higher doping. A complementary viewpoint is given in
Fig. 3(b) showing �qpair, the length of the residual gapped

region of the Fermi surface, at the critical current. As
doping is increased, the maximal pocket size grows and
�qpair drops, until it reaches zero at x ¼ x0. At x 	 x0 the

critical current is obtained when the wave function is fully
depaired. The Fermi pockets at the critical current are
shown in panels I–III in Fig. 3 for three doping levels.

We conclude that optimal doping marks a transition
between two distinct mechanisms for destruction of super-
conductivity with current: a BCS-like mechanism for x >
x0, and a ‘‘bosonic’’ mechanism, whereby superconductiv-
ity is destroyed with pairing still present, for x < x0. The
doping independent value of Qc suggests an analogy with
lattice bosons for which superfluidity is destroyed at Qc ¼
�=2 [16]. The residual pairing at the critical current sug-
gests that the normal state formed upon destruction of
superconductivity in the underdoped regime retains pairing
correlations.

The transition between the two mechanisms gives rise to
a maximum of Jc at x ’ x0 [17]. The dome shape of the
critical current as a function of doping, shown in Fig. 3(c),

is reminiscent of the observed doping dependence of the
critical temperature, with a similar optimal doping level.
We can estimate the expected critical current in the under-
doped regime as Jc 
 �s0Qc. Taking �s0 ¼ �ab from ex-
periments, such as [6], and Qc 
 �=2 gives a (3D) current
density of Jc=d
 107 A=cm2, where d is the interlayer
spacing. This is an estimate for the microscopic critical
current, or the maximal current at the edge of a vortex core.
The macroscopic critical current may be significantly sup-
pressed due to inhomogeneity.
Before proceeding we note, that similar behavior might

have been expected within RMFTs [13], due to the com-
petition between the rising stiffness and falling gap which
was noted early on [14]. Nevertheless, a calculation of the
critical flow within RMFTs (dashed lines in Fig. 3) draws a
markedly different picture than does the variational calcu-
lation. In particular, the critical flow wave vector drops
continuously as 1=x2 and the pocket size is always smaller
than the Brillouin zone, so that there is no complete
depairing at any doping level within RMFTs.
The current dependent superfluid stiffness.—The current

dependent superfluid stiffness is the nonlinear response
�sðQ0Þ ¼ @2QEjQ¼Q0

and is calculated within the varia-

tional scheme by fitting the optimized energy to Eq. (4)
in the range 0<Q<Qc [15].
The result is displayed in Fig. 4(a), showing the doping

dependence of the variational stiffness �s0 (solid circles)
compared with the mean field calculation (dashed). Note
that we obtain an improved estimate of the superfluid
stiffness, including paramagnetic contributions, compared

FIG. 3 (color online). Critical flow vs doping calculated from
VMC (solid lines) vs RMFT (dashed lines) results. (a) Critical
flow wave vector Qc. (b) Length of residual paired region in the
underlying Fermi surface. (c) Critical current Jc vs doping. Right
panels: pockets at the critical flow for three doping levels marked
in panel (b). The pockets grow with doping until they touch the
zone boundary at x 	 0:15.
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with the diamagnetic upper bound (squares) that was cal-
culated previously [18].

More importantly, we can now study the suppression of
superfluidity with the flow, which at small Q has the form
�sðQÞ ’ �s0 � 	jQj. Figure 4(b) displays the coefficient 	
as a function of doping extracted from the variational
calculation (solid circles). This doping dependence is
clearly weaker than the RMFT result (dashed) in which
	
 x3 [5]. We note that in the underdoped regime 	 can
be related to Qc via (4) as 	 ’ �s0=Qc. Since �s0 
 x, the
weak doping dependence of 	 can be traced back to the
doping independent critical flow Qc. Hence it also stems
from the bosonic mechanism of destruction of supercon-
ductivity in the underdoped regime.

It is plausible that the weak doping dependence of
@�s=@Q shares the same origin as the unexplained weak
doping dependence of @�s=@T [6]. The latter is not under-
stood within mean field approaches [4,7] nor from calcu-
lations of the current carried by a Gutzwiller projected
single QP state [11]. Both slopes stem from paramagnetic
current of QPs near the nodes, induced either by tempera-
ture or current. Measurements of the stiffness reduction in
the presence of supercurrent may clarify the relation be-
tween @�s=dT and @�s=dQ in cuprates.

Summary.—Using a new class of variational states we
identified a transition between two mechanisms for the
destruction of superconductivity with current. In the over-
doped regime (x > 0:15) we found a BCS-like mechanism,
where the critical current is reached due to complete
depairing, while in the underdoped regime we observed a
bosonic mechanism where superconductivity is destabi-
lized while pairing survives. The critical current has a
dome shape with an optimal doping set by this transition
[19]. We computed the linear reduction of the superfluid
stiffness at small current. The slope d�s=dQ depends only

weakly on doping, reflecting the puzzlingly weak doping
dependence of d�s=dT in experiments.
Though our results pertain to the destruction of super-

conductivity with current at zero temperature, they are
strongly suggestive of a pairing mechanism underlying
the pseudogap phenomenology in the underdoped cuprates
at T > Tc. Further insight into the nature of the normal
state can be gained by extending our work to allow com-
peting orders, such as spin or charge-density wave, possi-
bly reducing the variational energy as superconductivity is
suppressed [20,21]. This may also elucidate the role played
by a quantum critical point, where the competing order in
the normal state vanishes [22].
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slope 	 ¼ @�s=@Q vs doping. Compare with the much weaker
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