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Measurement of the transmission phase through a quantum dot (QD) embedded in an arm of a two-

terminal Aharonov-Bohm (AB) interferometer is inhibited by phase symmetry, i.e., the property that the

linear response conductance of a two-terminal device is an even function of the magnetic field. It is

demonstrated that in a setup consisting of an interferometer with a QD in each of its arms, with one of the

QDs capacitively coupled to a nearby quantum point contact (QPC), phase symmetry is broken when a

finite voltage bias is applied to the QPC. The transmission phase via the uncoupled QD can then be

deduced from the amplitude of the odd component of the AB oscillations.

DOI: 10.1103/PhysRevLett.104.256801 PACS numbers: 73.23.�b, 73.63.Kv

Measuring the transport amplitude t through a quantum
dot (QD), as a function of energy (or gate voltage), can give
detailed information about the energy structure, the wave
functions, and the many-body correlations in the QD.
While the absolute value of the transmission jtj2 can be
easily measured [1], and has been employed extensively to
characterize the QD, measurements of the transmission
phase are much more subtle. The standard experimental
approach is to embed the QD in an Aharonov-Bohm (AB)
interferometer [2–12], and study the change in the phase of
the AB oscillations, as a function of the QD parameters,
e.g., gate voltage. However, the relation between the AB
phase and the transmission phase is not straightforward
[13]. In particular, when the AB interferometer is con-
nected to two terminals, then the Onsager-Büttiker rela-
tions dictate that the linear response conductance must be
an even function of magnetic flux [14–16], which means
that the phase of AB oscillations can assume only the
values 0 or � (phase-symmetry), independent of the trans-
mission phase through the QD. This obstacle has been
overcome experimentally by employing an open interfer-
ometer, i.e., an interferometer with more than two leads.
However, this approach requires advanced technology and
suffers from low signal due to particle losses to the other
leads, and so far only a single group has been reporting
measurements of the transmission phase using this ap-
proach [4,6,9,11]. Alternatively, it has been suggested
that the phase may be extracted from a multiparameter fit
to the shape of AB oscillations [17].

In this Letter we propose a new way to measure directly
the transmission phase via a QD in a two-terminal AB
interferometer, by coupling it to a nearby quantum point
contact (QPC). The proposed measurement setup (Fig. 1)
resembles the so-called ‘‘which path’’ interferometer
[18,19], which in our case consists of a two-terminal AB
interferometer containing a QD in each of its arms, and a
QPC capacitively coupled to one of the QDs (QD2), as
shown in Fig. 1. The QPC is expected to reduce the

amplitude of the AB oscillations [19] (due to the dephasing
caused by collecting the which-path information) but more
importantly in the present context, it causes breaking of the
phase symmetry when a finite bias is applied to it. (This, in
fact, is a special case of breaking of the phase symmetry
due to a nonequilibrium environment [20].) This phase-
symmetry breaking will enable a direct measurement of the
transmission phase through the QD not coupled to the QPC
(QD1).
In this geometry, and under QPC bias, when a level in

QD1 is swept across the Fermi level of the interferometer
leads, the AB phase smoothly flows between the values 0
and �. Thus, breaking of the phase symmetry by coupling
to a nonequilibrium environment can be observed experi-
mentally, which, to our knowledge, has not been done so
far. The observed phase of the AB oscillations, however, is
not the transmission phase via QD1. Nevertheless, as we
demonstrate below, the transmission phase through the
QD1 can still be extracted from the amplitude of the odd
component of the AB oscillations. In the following we
present the model describing our which-path detector, dis-
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FIG. 1 (color online). Schematics of which-path interferome-
ter studied in this Letter. The Aharonov-Bohm interferometer
contains a quantum dot in each arm. In order to measure the
transmission phase through one of the dots (QD1), a quantum
point contact is coupled electrostatically to the other dot (QD2),
in order to break the phase symmetry.
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cuss breaking of the phase symmetry, and propose a
straightforward method of measuring the transmission
phase via the QD.

We describe the system by the following Hamiltonian:

H ¼ X
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The first term describes the noninteracting QDs forming
the interferometer—d� is the operator that destroys an
electron in QD �ð� ¼ 1; 2Þ. For simplicity we treat a
single level in each dot, but the calculation and the results
can be trivially extended to multilevel dots. The second
term describes the leads: ck destroys an electron in state k.
The states in the leads are filled up to their respective
chemical potentials �L;R. The third term describes the

QPC, the states in which are taken to be right or left movers
(� ¼ �) labeled by wave numbers p, p0. ap� is the corre-

sponding electron destruction operator. Right- and left-
moving bands are filled up to their respective chemical
potentials ��. The fourth term accounts for tunneling be-
tween the leads and the QDs, characterized by coupling
strengths �

�
�� ¼ 2�N�t��t

�
��, where N� is the density of

states in lead �. The AB flux enters via the phases of these
complex tunneling matrix elements t�� such that

t�1Lt1Rt
�
2Rt2L ¼ t1Lt

�
1Rt2Rt

�
2Le

i2’, where ’ ¼ 2��=�0, �
is the magnetic flux threading the interferometer, and
�0 ¼ hc=e is the flux quantum. The last term describes
the electrostatic interaction between QD2 and the QPC,
manifested in additional scattering potential when an elec-
tron occupies QD2, which reduces the QPC transmission
by �T ¼ 2�gc. [gc ¼ 2�ð�0UÞ2 determines the rate at
which QPC electrons are backscattered, gceVQPC=@ [19];

�0 is the density of states in the QPC.]
The current via the interferometer was calculated using

standard techniques [21,22]. Interaction with the QPC was
treated as a second-order self-energy in QDs Green’s func-
tions. The linear response conductance for zero bias on the
QPC is shown in Fig. 2(a). The AB oscillations are even in
magnetic flux, and there is a phase jump that occurs around
�1 � �0:7 �eV, where the oscillations change from hav-
ing a minimum at zero magnetic field to having a maxi-
mum. (Although visually the jump occurs around
�1 � �0:4 �eV, its correct location can be determined
from Fig. 2(c).)

When a finite bias is applied to the QPC, the phase
symmetry is broken. Figure 2(b) depicts the difference in
the conductance between VQPC ¼ 400 �eV and VQPC ¼ 0.
The asymmetric component of the AB oscillations is now

evident. The amplitude of the odd component of the oscil-
lations, shown in Fig. 2(d), now takes experimentally
measurable values. The phase of the main harmonic of
the AB oscillations, extracted by Fourier transform, is
shown in Fig. 2(c) for different values of VQPC. This phase

changes abruptly at zero bias, but flows smoothly between
0 and � as the bias on the QPC increases.
The magnitude of the odd component of the AB oscil-

lations is proportional to the strength of the coupling
between the QPC and QD2, which also determines the
experimentally observed reduction of the visibility of the
AB oscillations in which-path experiments [18]. Therefore
it should also be possible to observe breaking of the phase
symmetry experimentally. Then the antisymmetric compo-
nent of the AB oscillation which can be extracted by
antisymmetrizing the data [23], can be used to deduce
the transmission phase through QD1, ’QD1ð�Þ, as a func-

tion of its energy, as discussed below.
Assuming that the level in QD2 is far from the Fermi

level of the interferometer leads, i.e. �11, �22, j�1 � �Fj �
j�2 � �Fj, one can express the odd component of the AB
conductance as
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G0

2
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�L
22�

R
22

q
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FIG. 2 (color online). (a) Linear response conductance as a
function of magnetic flux (horizontal axis) and the energy of the
level in the reference arm �1 (vertical axis) for VQPC ¼ 0 �eV,

and (b) its change when the QPC bias is VQPC ¼ 400 �eV.
(Other parameters are �L

11 ¼ �L
22 ¼ 1 �eV, �R

11 ¼ �R
22 ¼

5 �eV, gc ¼ 1:32� 10�4, �2 ¼ 1:5 �eV, �F ¼ 0 �eV.)
(c) Phase of AB oscillations as a function of �1 for different
values of QPC bias; since �2 > �F, the transmission coefficient
is not symmetric in respect to the Fermi level and the phase jump
is shifted to �1 ¼ �0:7 �eV. Inset: dephasing rate, 	ð�FÞ as a
function of the QPC bias, VQPC; different traces correspond to

(from left to right) �2 ¼ 1:5 �eV, and 300 �eV; (d) odd part of
the AB conductance at VQPC ¼ 400 �eV.
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where 	ð�Þ is the additional broadening (dephasing rate) of
the level in QD2 due to the coupling to the QPC [19,24],
and < stands for the real part. Under the conditions out-
lined above, the visibility of AB oscillations is unaffected
by the dephasing, and 	ð�2Þ in the denominator can be
ignored along with �22, with respect to ð�2 � �FÞ2. In the
numerator 	ð�FÞ determines the strength of the odd com-
ponent of the AB oscillations. At zero bias on the QPC
	ð�FÞ is zero, which reflects the fact that no breaking of the
phase symmetry occurs in an interferometer coupled to an
equilibrium environment [20]. With increasing the QPC
bias 	ð�FÞ grows slowly (due to finite temperature and �22)
until it reaches the ‘‘ionization threshold,’’ VQPC ¼ j�2 �
�Fj, after which it grows nearly linearly with bias, i.e., as
	ð�FÞ � gcðVQPC � j�2 � �FjÞ [inset in Fig. 2(c)].

Similarly, the term proportional to<½tQD1ð�2Þ� in Eq. (2)
can be omitted along with 	ð�2Þ. Note also that Godd

vanishes in a symmetric device, i.e., when �L
22 ¼ �R

22,
because in this case changing the sign of the magnetic
field is equivalent to interchanging the leads, leaving the
conductance unchanged. Other mechanisms of phase-
symmetry breaking are also known for their sensitivity to
the device asymmetry [10,23,25,26].

The only factor in Eq. (2), dependent on the energy of
the level in the reference arm of the interferometer, �1, is
the real part of the transmission amplitude tQD1ð�FÞ, which
is proportional to cos’QD1, the sought-after transmission

phase. The other unknown energy-dependent quantities in
this equation can be eliminated by measuring of the con-
ductance via QD1 with QD2 disconnected,

GQD1ð�FÞ ¼ G0

2
jtQD1ð�FÞj2: (3)

Then the cosine of the transmission phase via QD1 can be
immediately extracted as

cos½’QD1ð�FÞ� / Godd

ffiffiffiffiffiffiffiffiffiffiffi
GQD1

p : (4)

Equation (2) is also correct for a multilevel QD in the
reference arm, given that the above-mentioned conditions
are still satisfied. This is true even in the presence of
interactions, as long as the interaction induced level broad-
ening is small compared to �11, �22.
Figure 3 depicts the case of two levels of energies �1a

and �1b ¼ �1 � 15 �eV and identical widths �L
11 ¼

1 �eV, �R
11 ¼ 5 �eV, having the same (left panel) or

opposite (right panel) parity. [�2 ¼ 0:2 meV, all other
parameters are the same as those used for Fig. 2. A level
is defined to have even (odd) parity if the tunneling matrix
elements connecting the level to the two leads, t�L and t�R,
have the same (opposite) signs.] We see that the amplitude
of the odd AB conductance (shown normalized to its
maximal value) differs from the real part of the trans-
mission coefficient only by a constant factor (and possibly
sign), Figs. 3(b) and 3(e) as expected from Eq. (2). There is
an excellent agreement between the transmission phase
deduces from Eq. (4) and the one calculated directly, for
both cases [Figs. 3(c) and 3(f)].
The case of two levels of the same parity, shown in the

left panel of Fig. 3, is of particular interest in connection to
the studies of phase lapses [27] (apart from the fact that we
do not account here for the Coulomb interaction) due to its
important generic feature: an abrupt change of the phase by
�, as can be seen in Fig. 3(c).
The abrupt change in the phase may occur only when the

transmission coefficient, Fig. 3(a), is identically zero, i.e.,
when both its real and imaginary components vanish si-
multaneously, and then the phase is undefined. On the other
hand, if only the real part is zero, the phase is �=2 and
usually corresponds to a transmission resonance. The fact
that the zeros of Godd correspond to one of these two types
of special points is important, since in principle, the trans-

FIG. 3 (color online). (a),(d) Transmission, (b),(e) real part of the transmission coefficient and odd AB conductance (normalized to
its maximum), and (c),(f) cosine of the transmission phase and its value extracted from Godd [Eq. (2)] for QD1 with two levels of the
same parity (left) or different parity (right) (see parameters in the text).
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mission zeros of QD1 may be shifted in respect to those of
QD1 with QD2 uncoupled (e.g., due to the level energy
shifts induced by electron tunneling back and forth be-
tween the two dots), which may lead to unphysical results
when naively applying Eq. (4). Therefore, one may have to
shift Godd along the energy axis in order to make its zeros
coincide with those of GQD1, which we did when plotting

Figs. 3(b) and 3(c).
In the case of two levels of different parity, Fig. 3, right

panel, the transmission is never equal to zero, and the phase
changes smoothly.

Since Eq. (4) is only a proportionality relation, the
cosine of the transmission phase has to be normalized to
interval [�1, 1]. In the case of the levels of the same parity
it is conveniently done using the abrupt change of the phase
between 0 and�, where the value of cosine should be set to
change between 1 and�1. In the absence of such an abrupt
jump, e.g., for the two levels of different parities, the cosine
may be normalized by its peak value, Fig. 3(f), where
phase is expected to take value �.

The normalization factor is the prefactor in Eq. (2),
which is proportional to the dephasing rate and therefore
dependent on the QPC bias, VQPC. On the other hand, the

transmission coefficient through QD1 is independent of
this bias; i.e., by measuring Godd at different values of
VQPC one should obtain results that differ only by a con-

stant prefactor. Thus, having determined <½tQD1� in one

measurement, one can use measurements at different val-
ues of VQPC to study the dependence of the dephasing rate,

	ð�FÞ, on VQPC. If, in addition, one is able to measure

independently the coupling strengths �
�
��, one may use

Eq. (2) to extract the interaction constant gc and compare it
with that measured by other methods [28].

To conclude, we propose that breaking of the phase
symmetry, necessary for measuring the transmission phase
via a QD, embedded in an arm of an AB interferometer,
can be achieved by coupling the interferometer to a QPC in
a which-path geometry, which is equivalent to phase sym-
metry breaking by coupling to a nonequilibrium environ-
ment, predicted in Ref. [20]. Although the phase of the
resulting AB oscillations is not the transmission phase via
the QD, the latter can be extracted from the amplitude of
the odd part of the AB oscillations.
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