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Pure spin currents carry information in spintronics and signify novel quantum spin phenomena such as

topological insulators. Measuring pure spin currents, however, is difficult since they have no direct

electromagnetic induction. Noticing that a longitudinal spin current, in which electrons move along their

spin directions, is a chiral quantity, we envisage that it has a chiral sum-frequency optical effect. A

systematic symmetry analysis confirms this idea and reveals the second-order optical effects of general

spin currents with unique polarization dependence. Microscopic calculations based on the eight-band

model of III-V compound semiconductors show that the susceptibility is sizable under realistic conditions.

These findings form a basis for ‘‘seeing’’ spin currents where and while they flow with standard nonlinear

optical spectroscopy, providing a toolbox to explore a wealth of physics connecting spins and photons.
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Pure spin currents (PSCs), which are made of opposite
spins moving with opposite velocities, carry information
via spins in lieu of charges and play a key role in spin-
tronics [1,2]. They also signify the occurrence of some
novel spin-related quantum phenomena such as the spin
Hall effect [3–10] and topological insulators [11–15]. Spin
currents were previously observed via spin accumulation at
stopping edges [7–9,16] or conversion to electrical signals
[10,17–19]. Direct and nondestructive measurement of
PSCs where and while they flow [20,21] is highly desired,
but is very difficult because a PSC bears neither net charge
current nor net magnetization and therefore has no direct
electromagnetic induction. A previous scheme of detecting
a PSC by a ‘‘photon spin current’’ carried by a polarized
light beam [20] is limited by weak interaction since the
photon current involves the tiny light momentum.
Recently, a remarkable experiment [21] showed coupling
between a spin current and a spin wave. As a direct probe
of spin currents, however, the spin-wave technique re-
quires special design and fabrication of magnetic
nanostructures.

In this Letter, we present a conceptually new aspect,
namely, second-order nonlinear optical effects, of spin
currents resulting from their unique physical nature and
symmetry properties. Noticing that a longitudinal spin
current, in which the spins point parallel or antiparallel to
the current, is a chiral quantity, we envisaged that it can be
probed by the chiral sum-frequency optical spectroscopy
which was recently developed to detect molecular chirality
[22–24]. By symmetry analysis in general cases and micro-
scopic calculations in realistic models, we discovered that
a PSC has sizable second-order optical susceptibility. This
finding lays the foundation of direct, nondestructive mea-
surement of spin currents by standard optical spectroscopy,
facilitating application of spintronics [1,2] and research on
spin-related physics [3–15].

Spin currents have peculiar symmetry properties owing
to the characteristics of spins. A spin is an axial vector. As
illustrated in Fig. 1(a), a spin reverses inside a parallel
mirror and is unchanged inside a perpendicular mirror, the
opposite of a usual vector. When particles move parallel or
antiparallel to their spin directions, a longitudinal spin
current results, which has a special symmetry property—
chirality, as illustrated in Fig. 1(b): If a spin’s microscopic
current circulates its moving direction left-handedly, the
mirror image does right-handedly, and vice versa.
The chiral sum-frequency effect of a longitudinal spin

current is illustrated as follows. In chiral sum frequency,
two input optical fields F1 and F2 (with frequencies!1 and
!2, respectively) and the induced polarization field P at
frequency !1 þ!2 form a left- or right-hand system.
Figure 1(c) shows how a chiral sum-frequency process
occurs in a chiral system. Considering a right-hand helix,
a charge at position A will be driven to point B by an
electric field F1, which is along the X axis, and then to
point C by F2, which is along the Y axis. The confinement
of the helix leads to a net displacement along the Z axis.
Thus (F1, F2, P) form a right-hand system. If the order of
input fields is reversed (F2 applies before F1), the charge
would follow a trajectory like D ! E ! F, resulting in a
polarization along the�Z axis, and (F2, F1, P) still form a
right-hand system. Similarly, the sum frequency in a left-
hand helix is a left-hand chiral process. A sum-frequency
process is characterized by a second-order susceptibility

�ð2Þ via Pð!1 þ!2Þ ¼ �ð2Þ: F1ð!1ÞF2ð!2Þ. In the above
example of helix, the susceptibility may be written as a

form of three dyadic vectors, �ð2Þ ¼ AðZYX� ZXYÞ,
i.e., a rank-3 tensor. Thus the chiral sum-frequency sus-
ceptibility provides a measurement of the chirality of a
physical object. If otherwise measured in linear optics, the
effect of the chirality relies on the small magnetic moment
of the molecules, and in turn on the small wave vector of
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the probe light, similar to the case of linear optical effects
of spin currents [20].

For a systematic symmetry analysis, we consider a spin
current with both longitudinal and transverse components.
We define the Z axis as the current direction and the X axis
as the spin direction of the transverse component. The spin
current can be written as a rank-2 tensor J ¼ JXXZþ
JZZZ, in a form of dyadic vectors, in which the left (right)
vector is the spin (current) direction and JZðXÞ is the longi-
tudinal (transverse) amplitude. Above all, the spin cur-
rent breaks the inversion symmetry, making possible a
second-order optical process [25].

In general, the sum-frequency susceptibility tensor

has 27 independent terms, �ð2Þ ¼ �XXXXXXþ
�XXYXXYþ � � � þ �ZZZZZZ, but the symmetry proper-
ties of a spin current will set many terms to be zero or
nonindependent [25]. For a longitudinal spin current, only
the chiral terms are nonzero. In a nonchiral term, at least

one of the three directionsX, Y, and Z appears even times
(twice or zero times). Consider �XXYXXY for example.
Under reflection by the Y-Z plane, the longitudinal spin
current is reversed, but �XXYXXY is unchanged, so this
term must be zero. Similar arguments apply to other non-
chiral terms. Also, the susceptibility must be antisymmet-
ric under reflection by any plane parallel to the Z axis. With
these constraints, the sum-frequency susceptibility of a
longitudinal spin current can be written as

�ð2Þ
JZ

¼ JZ½�1ðXYZ� YXZÞ þ �2ðYZX�XZYÞ
þ �3ðZXY � ZYXÞ�; (1)

with only three independent parameters. As for a trans-
verse spin current JXXZ, it changes its sign under reflec-
tion by the X-Z plane but is invariant under reflection by
the X-Y or Y-Z plane [see Fig. 1(d)], each nonzero term in
the susceptibility must contain odd times of Y and even

FIG. 2 (color online). Models for microscopic calculation of the sum-frequency susceptibility. (a) The full eight-band model and the
electron spin distribution for a PSC in a semiconductor. (b) and (c) Selection rules and relative dipole moments from the spin-3=2 and
spin-1=2 valence bands to the conduction band, respectively. (d) A simplified model with the HH-LH splitting neglected, in which the
spin states and selection rules for interband transitions can be defined independent of the momentum. The transition energies to the
Fermi surface from different valence bands are indicated.

FIG. 1 (color online). Symmetry analysis for sum-frequency effects of spin currents. (a) A spin under mirror reflections. (b) A
longitudinal spin current under mirror reflections. The arrows indicate the moving directions of the spins. (c) Chiral sum-frequency
processes in chiral systems. (d) A transverse spin current under mirror reflections.
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times of Z or X, so

�ð2Þ
JX

¼ JXðx1XXY þ x2XYXþ x3YXXþ z1ZZY

þ z2ZYZþ z3YZZþ yYYYÞ; (2)

with seven independent parameters. The unique
polarization dependence of the second-order susceptibility
of a spin current can be used to distinguish its transverse
and longitudinal components, and also to single out the
spin-current signature from the effects of the material
background or a charge current [26].

To determine the independent parameters of the suscep-
tibility in Eqs. (1) and (2), we performed microscopic
calculation for a PSC in a bulk GaAs, using the standard
perturbation theory [25,27] with an eight-band model [28].
We assumed that the pure spin-current result from a non-
equilibrium distribution of electrons in the conduction
band, with a small portion of electrons near the Fermi
surface having opposite spin polarizations for opposite
velocities [Fig. 2(a)], under conditions similar to those in
Ref. [7]. The optical interaction includes the interband
transitions and the intraband acceleration of electrons and
holes. To avoid real absorption of light, the light frequen-
cies were chosen such that the sum frequency is below the
band gap. For the sake of simplicity, we neglected the
anisotropy of the valence bands. We also neglected the
Coulomb interaction, since it is largely screened in the
n-doped material. These approximations, according to
the symmetry analysis, would only quantitatively modify
the results. The spin splitting due to the bulk inversion
asymmetry of the material (the Dresselhaus effect) is as
small as 0.01 meV for the doping level considered (3�
1016 cm�3), and therefore was neglected. The bulk inver-
sion asymmetry would cause a background second-order
susceptibility, which is indeed strong but can be well
separated from the spin-current effect by ac modulation

of the current and phase-locking detection. Two represen-
tative results of the calculated susceptibility spectra are
shown in Fig. 3. The other terms of the susceptibility tensor
(not shown) have similar frequency dependence and com-
parable amplitudes. As a specific example, a transverse
spin current 20 nA=�m�2 has a susceptibility �YZZ �
0:40� 10�9 esu (or 0:17� 10�12 m=V in SI units) for
input frequencies !1 ¼ 100 meV and !2 ¼ 1; 400 meV,
or 17:� 10�12 esu for!1 ¼ !2 ¼ 750 meV (correspond-
ing to the second harmonics generation).
To better understand the microscopic mechanism of

the sum-frequency effect of a spin current, we simplify
the model by neglecting the splitting between the heavy
hole (HH) band and the light hole (LH) band. Under this
approximation, the HH and LH bands form a spin-3=2
band with fourfold degeneracy. The split-off (SO) band
and the conduction band have spin-1=2. Thus the spin
states and the selection rules for interband transitions are
separated from the momentum [Figs. 2(b) and 2(c)].
Let us consider a single electron with momentum k and

spin polarization sk [Fig. 2(d)]. We set up a coordinate
system (e1, e2, e3) so that sk ¼ e3ðfþ � f�Þ=2 with fþ=�
denoting the population at the spin-up or -down state. The
angular momentum conservation requires that a light with
circular polarization e1 � ie2 couples only to the transi-
tions jj; mi $ j1=2; m� 1i, where j ¼ 3=2 or 1=2 is the
spin of a valence band and m ¼ �j, jþ 1; . . . ; or j is the
component along the e3 axis. The relative dipole moments
of the relevant interband transitions are indicated in
Figs. 2(b) and 2(c). To simplify the discussion, we set the
input frequency !2 to be near resonant with the band gap
and much greater than !1, so that the interband transitions
and the intraband driving are mostly caused by
F2 expð�i!2t2Þ and F1 expð�i!1t1Þ, respectively.
We first examine interband transitions. For example, the

transition j3=2;�3=2i ! j1=2;�1=2i generated from the

time t2 to t2 þ dt2 has a probability amplitude dG2 ¼
ið1� f�Þðd�cv=

ffiffiffi
2

p Þðe1 þ ie2Þ� � F2 expð�i!2t2Þdt2, where
dcv is the interband dipole, and the factor (1� f�) ac-
counts for the Pauli blocking. After the excitation, the
probability amplitude oscillates with frequency E3=2ðkÞ,
leading to the optical polarization ðe1 þ ie2Þ�
ðdcv=

ffiffiffi
2

p Þe�iE3=2ðkÞðt�t2ÞdG2 at time t, where E3=2ðkÞ ¼
k2=ð2meÞ þ k2=ð2m3=2Þ is the transition energy of a pair

of electron and hole with mass me and m3=2, respectively.

The radiation has the same circular polarization as the
input because of the angular momentum conservation.
Summation over all possible transitions and integration
over time give the linear optical response to the field F2 as

Pð1ÞðtÞ ¼ i

3
jdcvj2

Z t

�1
e
�i
R

t

t2
E3=2ðkÞd�X

�
ð1� f�Þ

� ðe1 � ie2Þðe1 � ie2Þ� � F2e
�i!2t2dt2: (3)

Thus Pð1Þ / skðe1e2 � e2e1Þ � F2 ¼ F2 � sk, which has a

FIG. 3 (color online). Representative results of the sum-
frequency susceptibility. (a) �XYZ due to a longitudinal spin
current, and (b) �YZZ due to a transverse spin current, as
functions of the optical frequencies. Parameters are chosen
similar to those in Ref. [7]: The band gap is 1519 meV, the
HH-SO splitting is 341 meV, the doping concentration is 3�
1016 cm�3, the effective mass (in units of free electron mass) of
the HH, LH, SO, and conduction bands is in turn 0.45, 0.082,
0.15, and 0.067, the dipole dcv ¼ 6:7 e �A, the dielectric constant
"r ¼ 10:6, and the spin current JX ¼ JZ ¼ 20 nA=�m2.
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transparent physical meaning: The linear polarization of
the output field is related to that of the input one by a
rotation about the spin, essentially a Faraday rotation due
to the spin acting as a magnet. When the effect of the
intraband driving by F1 is included, the momentum k

should be replaced with the accelerated one ~k� 	
k� eF1

R
�
�1 expð�i!1t1Þdt1 at time �. By expansion to

the linear order of F1, we have ~k2� � k2 � 2ek �
F1

R
�
�1 expð�i!1t1Þdt1, so the second-order optical re-

sponse can be written as P / F2 � skevk � F1, where vk 	
k=me is the velocity of the electron with momentum k.
The physical meaning of evk � F1 is the power done by the
field to the electron. eskvk is just the spin-current tensor
contributed by the electron.

For a distribution of electrons, the summation over the
momentum space gives the sum-frequency response as
P ¼ �F2 � ðJ � F1Þ, with

� ¼
�
"r þ 2

3

�
3 ð2=3Þjdcvj2ð1þme=m3=2Þ
ð!1 þ!2 � E3=2Þð!2 � E3=2Þ!1

� ðE3=2; m3=2 ! E1=2; m1=2Þ; (4)

derived by Fourier transformation of Eq. (3) including the
intraband driving and the contribution of the SO band,
where the factor containing the material dielectric constant
"r takes into account the difference between the macro-
scopic external field and the microscopic local field [29],
mj denotes the mass of the spin-j hole band, and Ej is the

transition energy from the spin-j band to the Fermi surface
[see Fig. 2(d)]. The constants in Eqs. (1) and (2) are such
that �1 ¼ �z2 ¼ z3 ¼ � and others ¼ 0. With the HH-LH
splitting neglected, the sum-frequency susceptibility has a
compact form with only one independent parameter. This
feature is due to the separation of the spin and motion
degrees of freedom of the electrons and holes. When the
HH-LH splitting is nonzero, the spin quantization direction
and therefore the optical selection rules depend on the mo-
mentum and vary with acceleration of the particles (a Berry
curvature effect). This leads to the general form of suscep-
tibility in Eqs. (1) and (2), with the extra terms proportional
to the HH-LH splitting.

In summary, with systematic symmetry analysis in gen-
eral cases and microscopic calculation under realistic con-
ditions, we have shown that a pure spin current has a
sizable sum-frequency susceptibility. In particular, a lon-
gitudinal spin current has a chiral sum-frequency effect.
The current results can be straightforwardly extended to
other second-order optical spectroscopy such as
difference-frequency and three-wave mixing [25]. With
universality of the method guaranteed by the symmetry
principle and without requirements of resonance condi-
tions or special structure design and fabrication, the non-
linear optical spectroscopy can be applied to study a wide

range of spin-related quantum phenomena such as topo-
logical insulators [11–15]. Awealth of physics connecting
spins and photons and technologies synthesizing spin-
tronics and photonics may be explored.
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